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Abstract

This paper proposes a new paradigm for general purpose knowledge representation, storage,
retrieval, and inference.

Existing systems, such as databases, information retrieval systems, expert systems, and hypertext
systems, are widely heterogeneous in the metaphors and terminology used to describe them, in
the transfer protocols and languages they support, and so on.  As a result it can be very difficult
or impossible to make synergistic use of information from multiple systems, since they cannot
communicate with each other.

But in fact these various seemingly different kinds of storage systems are performing
fundamentally similar operations.  Thus, a system which provides abstractions of these
operations should be able to reproduce the functions of all of the preexisting systems
simultaneously.  Further, by encoding all knowledge in a standardized form, it becomes possible
for information from different sources, perhaps even concerning different realms of thought, to
be interconnected in new ways that may be very interesting and useful.

This paper describes a framework for such a general knowledge management system, based on
an object-oriented network of nodes and links.  Following the description of the basic
architecture of the system, various issues surrounding its use are discussed, including: queries
and inference, uncertainty, truth maintenance, user interface issues, object identification, and
time.

Finally, I have begun to implement in software the ideas described in the paper.  The current
architecture and functionality of the software is covered in the final chapter.
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Introduction

In this paper I describe my intuitions about how knowledge of all kinds can be stored, retrieved,
and intelligently processed by computer systems.  The bulk of the paper is intentionally
philosophical in nature: while I make perhaps extravagant claims about what computers can do
in principle, I provide no algorithms or proofs.  This project takes a view of computing on a large
scale, and attempts to show how different strands of present-day computing, particularly
involving object-oriented databases, distributed systems, and component-based software
architecture, can be tied together to produce a coherent and elegant paradigm for general purpose
computing.  To really work out the details of the system I will describe, as several observers
have pointed out, would require fifty doctoral theses.  For now, I attempt only to explain the
general idea as I see it, to make a map of the territory, and to identify a set of issues and ideas for
further development.

At the same time, in the interests of rigor and practicality, I have begun to implement the system
in software; indeed a large majority of the time I have spent on the project has been in coding.
At present, I have running code, written in Java, demonstrating perhaps ten percent of the ideas
in this paper.  Programming time is the primary limiting factor on the software; no
insurmountable theoretical or technical issues have arisen yet.  Thus, I expect the capabilities of
the software to continue to increase as I have more time to devote to it.  The current architecture
and capabilities of the implementation are described in chapter 7.
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1 Philosophy

1.1 A General Purpose Information Structure Manager

It is extremely frustrating that there exists so much digitized information in the world, and that
there is potential for orders of magnitude more, but that this information is stored in such
heterogeneous ways that it does not cohere on a grand scale.  Due to differences in representation
paradigms and languages, transfer protocols, file formats, and so on, it is very difficult to make
use of data from different realms in synergistic ways.

As a simple example, consider a physicist interested in gravitational lensing.  She is on her way
to a conference, and would like to talk to other physicists with similar interests when she gets
there.  Thus, she would like the computer to provide a list of physicists who are going to the
same conference and who are interested in gravitational lensing or related fields, along with their
photographs.

The list of conference attendees surely exists somewhere in digital form; somewhere else, or in
many separate locations (such as personal web pages), the particular interests of each physicist
are listed; somewhere else again (at the Department of Motor Vehicles, for example) digital
photographs of each person exist; finally there may be somewhere a concept map, in some digital
format, of how different fields of physics relate to each other.  Clearly there is no way today to
make synergistic use of these disparate sources to answer the query.

A recent project at Stanford and Epistemics, Inc., Infomaster, takes steps to solve this problem
by introducing an information broker which communicates with diverse preexisting systems.
The broker answers queries in a standardized language based on information from all of the
connected databases, and is able to make inferences drawing from multiple sources.  Thus the
Infomaster user is given the illusion of a single large database.  For example, if an Infomaster
broker knows how to communicate with one database listing financial data for many
corporations; a second, separate database (perhaps hosted on a different platform, using a
different query language, and so on) containing statistics on industrial pollution; and a third
database containing the telephone book, it can tell you the profits of the ten most polluting
companies in the 650 area code.

This is clearly a good idea; but I propose a different approach which is more drastic, more long-
term, and I think ultimately more powerful.  In this paper I describe a completely abstract and
general paradigm for storing and retrieving information of all kinds.  If all information were
encoded in a consistent and accessible way, in spite of perhaps vastly different conceptual
content, it would be much easier—or even completely automatic—to answer queries based on
information synthesized from many different sources, perhaps involving knowledge from what
would normally be considered separate conceptual realms.  Rather than developing a glue for
connecting puzzle pieces that don’t fit, I suggest an overarching standard for the shapes of puzzle
pieces.
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I might request a map showing the current geographic density of postmodern philosophers.
Right now there is surely somewhere a list in electronic form of postmodern philosophers;
somewhere else there is a telephone book giving their addresses; and in a third place there is a
geographic information system which can determine the physical location of a postal address.
So in principle the query should be answerable today; but it is not in practice because the
representation paradigms of the systems containing the three different kinds of information are
so different, and they have no mechanisms for communicating with one another.

To complicate matters further, imagine that there is no explicit list of postmodern philosophers
available after all.  Still it should be possible to answer the above query by first constructing such
a list, approximate of course, based on other information.  For example, the system I propose
might first do a keyword search for books concerning postmodernism, and make a list of the
authors.  Or it might do a two-step search, first finding journals having to do with postmodernism
and then constructing the list of all people who have published articles in such journals; it might
even include other authors who often cite sources from these journals (the necessary data is
available in the Citation Index).

The very same system should be able—in principle—to tell me the name of the nearest
supermarket which sells organic produce and has no complaints pending at the Better Business
Bureau, or the total tonnage of ships sunk in World War II (not including submarines, unless
they were sunk on Thursdays), or the major differences between Zen Buddhism and Taoism, or
the pattern of neural connections between the anterior thalamus and the hippocampus in the
brain, or the nearest common root in the etymologies of “tree” and “truth”.

A travel agent recently took a call from a woman who wanted a plane ticket to go to
“Hippopotamus, New York”.  The agent assured her that there was no such place, but the woman
was adamant; only after some time did the agent realize that the woman meant “Buffalo”
(Washington Post, May 15, 1998).  This is a simple—if whimsical—case in which a single large
information structure with a wide range of knowledge could have helped.  Presented with this
problem, such a system would rank the airports of the world in order of the strength of their
conceptual relationships with “Hippopotamus” and with “New York”.  Clearly “Buffalo” would
be first on such a list (unless the hippopotamus was by coincidence John F. Kennedy’s favorite
animal).

Databases (simple, relational, and object-oriented), expert systems, hypertext systems, semantic
networks, bayesian networks, neural networks, and even file system hierarchies are all
performing fundamentally similar operations concerning storage, retrieval, and inference; they
process information with some internal structure.  Thus, in spite of the different vocabularies and
metaphors used to describe these different systems, I believe that a single abstract paradigm can
provide the functionality of all of the above simultaneously—and more.
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1.2 Why the Name

The system is for organizing information of all kinds.

The system is organic and dynamic, being constantly updated and improved through interaction
with humans and internal processing.  It is a growing and evolving entity—an organism.

The system is based on Dagobert Soergel's Information Structure Management  paradigm.

1.3 Design Goals

1.3.1 Computing paradigm follows human thought, not vice-versa

Computing systems historically have imposed limitations on their users arising from theoretical
considerations of computability and complexity, as well as limitations arising from the ways of
thinking within which they were designed.  While both sets of limitations are clearly impossible
to overcome completely, a good information management system should be as flexible as
possible; it should be able to represent any human thought which is in principle encodable.
Second-order logic can be computationally messy, but human beings can and do often make
statements of second (and third, and fourth) order, and are quite good at reasoning about them.
The purpose of the sort of system I propose is not to be absolutely rigorous or provably correct
about anything; rather it is meant to be extremely expressive and to make a best effort at
processing information in ways that are intuitive, interesting, and useful for human users.

1.3.2 General Purpose

Many if not all existing database or knowledge base applications are limited to a certain realm of
discourse, since they generally define certain tables and columns, certain inference mechanisms
and rules, and so on.  In the case of a relational database application, for example, the structure
of the representation is always application-specific, and application-specific code exists outside
the database and interacts with it.

A more elegant and flexible approach, I think, will be to make the basic storage, retrieval, and
inference mechanisms completely abstract, and to encode any application-specific rules,
algorithms, display methods, and so on within the knowledge base itself.  Thus a single general
engine will be able to drive a wide variety of applications, where the particulars of each
application are stored just like any other data.  The principle here is similar to that of the general
Turing machine, which takes an encoded representation of any Turing machine as part of its
input and simulates the given machine acting on the remaining input.  The OrganISM is in the
same sense a generalized environment for storage, retrieval, and inference.
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1.3.3 Distributed

The World Wide Web has (in spite of its various failings) demonstrated the power of large-scale
distributed effort in providing information.  Any system of the scope I envision will clearly need
to be widely distributed and decentralized in structure in order to encourage widespread
participation, in order to handle the large storage volume and processing load, and in order to be
robust against any local failures.

1.3.4 Emergent Order

The system must be constructed in such a way that two conceptually related pieces of
information entered by different people at different times will be appropriately linked.  Many
existing systems are either like a bag of disconnected, loosely connected, or arbitrarily connected
bits (like the Web), or they have a static structure (like most databases).  The OrganISM is a self-
organizing system which dynamically preserves the structure of the information it is given and
builds on it in ways that we cannot necessarily predict or encapsulate in static constructs.  As
such a system acquires more information, its inferences should build on each other to produce a
complex model of the given material.  The purpose is not only to store information but also to
synthesize it.

1.3.5 Subjective Relativism: Author, Time, Context

Claims of absolute certainty or truth are inherently problematic for any large knowledge system
containing information relevant to actual human activity.  Obviously, different people can have
vastly different and contradictory beliefs, even on topics which they classify as matters of fact
rather than matters of opinion.  The system I propose must accommodate disagreements and
contradictions, and must rigorously track the sources of the information it contains.  Thus, along
with every statement, the system must record at least the author and the time, as well as any other
available contextual information which can later be used to qualify the statement, to assess its
reliability, to draw inferences about the author or about the context, and so on.

As far as such a system is concerned, there is no objective reality; it can answer queries only
from explicitly specified points of view, provided by users in the form of reliability ratings for
different sources.  Thus, different users might get vastly different results for the same query,
depending on which sources they trust and what other assumptions they provide.
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1.3.6 Efficient balance of Preprocessing Versus Realtime Processing

The system must strike a balance between storage-time processing and query-time processing.
Enough storage-time processing must be done to make later queries efficient—e.g. indexing in
the simplest case.  In general, some set of basic inferences should be stored which connect the
new datum at least to the general areas to which it relates, so that it can later be found without
searching large amounts of irrelevant material.  But there is little point in explicitly storing the
results of time-dependent inferences or of inferences which can be rapidly reproduced.

For example, imagine that the system already knows that “all dogs are mammals”.  Then, you
tell it that “Fido is a dog”.  Certainly this new datum must be linked to “Fido” and to the concept
of “dog”, but it is probably unwise to explicitly store the inference “Fido is a mammal”, since
this can easily be inferred later at search time.  Also, the facts may change; we may discover that
we were mistaken originally, and that Fido is in fact a frog.  In the case that we did store “Fido is
a mammal” explicitly, there are truth-maintenance mechanisms (described in section 4.6) which
insure that this statement will be appropriately modified to “Fido is an amphibian”.  The
computational cost of truth maintenance increases with the proportion of inferred statements in
the knowledge base, however; so in deciding when to store inferences explicitly, we must
consider the cost of making the inferences once, the frequency with which we expect the inferred
statements to be used, and the cost of maintaining their truth.
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2 The Basic Structure

2.1 Everything is an object

2.1.1 Objects

The fundamental unit of storage in the OrganISM is the object (or node), and the system is
structured as a network of objects and links between them.  Absolutely everything which is
encodable in principle can be encoded fairly intuitively as a set of nodes and links; indeed
sentences of natural language essentially establish links between the concepts denoted by their
constituent words, so any sentence can be modelled by a network appropriately linking the
relevant concepts.

An object may have content in any form—text, images, sounds, movies, files in proprietary
formats, compiled code, and so on.  The granularity with which content is stored in objects is not
bounded above or below by the system’s intrinsic mechanisms; but of course choosing a
granularity appropriate to some application is an issue, and will be discussed later.

2.1.2 Relations

In the OrganISM, relations between objects have semantic meaning (unlike, for example, links
in the Web); they are represented as n-tuples in prefix notation.  So
< “believes-in”, “Kant”, “A Priori Truths” >

expresses a particular relation between Kant and A Priori Truths.

Relations between objects are represented as objects in their own right.  This makes it possible to
make statements of arbitrary order, involving relations of relations, at infinitum.  While this
approach can quickly introduce extreme computational difficulties, it does mirror the flexibility
of human thought and language.

In order to store relations as objects, it is necessary to introduce a lower level of linking them
together; this is accomplished through untyped edges.  So the relation
< “teacher-at”, “Plato”, “The Academy” >

is itself an object containing an ordered triple of edges pointing to the three elements of the
relation—in this case, the first edge is to a relation type (a predicate), and the remaining two
edges are to the arguments.

Edges should always be bidirectional, so each object has an edge to all the relations in which it
participates.  Exceptions may be made in cases where this would lead to objects with large
numbers of edges of limited usefulness.  The “name-of” relation type, for example, will have
many, many instances, but searches will rarely be initiated from the “name-of” node.  So in this
case it will probably suffice to have an edge from each relation of type “name-of” to the “name-
of” node and to forego the reverse edge.
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Figure 1.  Example of objects and relations.

Figure 1 shows a set of objects linked by relations.  The circles represent relation objects.
Several of the primary object ovals appear empty because they represent a concept which has no
convenient textual representation.  The concept of a particular person is entirely different from
the person’s name, for example, which is just a piece of data about the person.

Thus the above diagram expresses the following:  A person called “Plato” was a teacher at a
place called “The Academy”, which (according to a book called “The World of Athens”
published in 1984 by “Cambridge University Press”) existed from 385 BC until 589 AD in
Athens, Greece.

Note that most edges are bidirectional, except those leading to “Name-of” and “Source-of”—
which, being extremely common relation types, are exempt from the bidirectionality
requirement.  Also note that the “Source-of” relations refer to other relations; they specify the
source of the claims represented by the relations.  (The relation of type “Geographical-location-
of” has an internal structure which allows the arguments of the relation to be distinguished from
the edge to the associated “Source-of” relation).

Relations can express predicates with arbitrary numbers of arguments; while the above examples
are all of two-argument predicates,
< “dead”, “Plato” > and
< “contains”, “Milk Chocolate”, “Cocoa Solids”, “30%”>

are equally valid.

Teacher-at

Name-of The AcademyPlato

Geographical-
Location-of

Athens,
Greece

Temporal-
Range-of

385 BC - 589 AD

Source-of

The World of
Athens

Publisher-ofCambridge
University Press

Date-published

1984 AD
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2.1.3 Relation Types / Classes

Since everything is an object, relation types are objects; that is, the particular semantic meanings
that relations can have are represented by objects.  Thus, in
< “teacher-at”, “Mark Mancall”, “Stanford”> ,
the first element in the relation points at an object representing the relation type “teacher-at”.
There may be many relations of this type, e.g.
< “teacher-at”, “Albert Einstein”, “Princeton” >
< “teacher-at”, “Richard Feynman”, “Caltech” >

But there is a single object representing the relation type “teacher-at”, to which each individual
instance is connected by an edge.  Since we can make statements about the “teacher-at”
archetype which will apply to all of its instances, that object represents the entire class of
“teacher-at” relations, and behaves very much like a class in an object-oriented programming
language.

The relation type may itself have relations to other objects which help determine its meaning,
such as synonyms, broader and narrower terms, and inference rules (see below).  It may have
relations to methods which operate on relations of this type.  These may include specialized
display methods: for example, the “geographical-location-of” relation type may be connected to
a map-drawing widget.  Also, specialized search methods may take advantage of the
characteristics of a particular relation type, so the “geographical-location-of” relation type may
be connected to a search program which can consider driving distance based on a road map.

2.1.4 Rules

Since everything is an object, inference rules are objects.  Rules are essentially relations between
relation types.  We might make an inference rule that everyone who is a teacher at a school is
employed by the school.  This is a relation between the “teacher-at” object and the “employed-
by” object, which might be represented something like
< “implies”, <“teacher-at”, A, B>, <“employed-by”, A, B>>

Other examples:
< “implies”, <”area-code-of”, X, “650”>,

< “geographic-location”, X, “San Francisco Peninsula”>>

< “probably-implies”, <”college-student”, X>,
< “age”, X, range(17-22)>, “90%”>

Relation types present in the system may be quite redundant.  Clearly there must be rules
encoding the equivalence of synonyms.  Also, it may often occur that a certain chain between
two objects, consisting of relations of certain types in a certain order, implies some direct
relation between the two objects.  Such a chain can be named and represented as a single relation
type, and the appropriate inference rules can link the long form of the chain with its single-
relation representation.

For example, imagine we are interested in the general chain type
<”parent-of”, A, B> AND <”brother-of”, B, C>
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We can name this chain by creating a new relation “uncle-of” and an inference rule such that the
above statement implies
<”uncle-of”, A, C>

2.1.5 Meta-Rules, etc.

Since everything is an object—including relations, relation types, and rules—we can make
arbitrarily complex structures of relations of relations, relations between rules, rules about rules,
and so on.  That is, this system can in principle represent logic of infinite order.  The conclusions
it will be able to draw from this representation are of course computationally limited, but this
should not deter us. Natural language can express many questions which humans are unable to
answer, and is nonetheless quite useful in practice.

2.2 Inheritance and Probabilistic Reasoning

Just like classes in object-oriented programming languages, relation types can inherit relations
from each other, and can override relations that would otherwise be inherited.  For example,
<”has-body-part”, “bird”, “wings”>
<”provides-ability”, “wings”, “flight”>
<”inherits-from”, “penguin”, “bird”>

From this, and the appropriate inference rules, the system could infer that
<”has-ability”, “penguin”, “flight”>

Since we know this to be false, we must override it with
<”lacks-ability”, “penguin”, “flight”>

where
<”excluded-middle”, “has-ability”, “lacks-ability”>

In this case, when a query involving the capabilities of penguins is evaluated, the system will
find that penguins both fly (inferred) and do not fly (given), and that the two conditions are
contradictory.  The probabilities of each statement being true are then evaluated, as in a
probabilistic network, and the more likely result is chosen.  Explicitly given information is
usually more reliable than inferred information, so the inherited inference will be overridden in
this case.

But what if the claim that penguins cannot fly comes from a source which is known to be
extremely unreliable?  In this case the system may conclude that penguins can indeed fly, in spite
of the attempted override.  Further, depending on the reliability of
<”excluded-middle”, “has-ability”, “lacks-ability”> ,

the system may find that the best solution is to report both possibilities.  Obviously, the problem
of tracking the probabilities of various statements and inferences can become very messy very
quickly, both because there may be many levels of statements, relations, meta-relations, and so
on, and because there may be feedback loops.  Existing computational methods in probabilistic
networks will need to be applied, and new ones developed, to deal with such issues.
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Multiple inheritance is certainly possible in principle; but in practice complications will arise
which will need to be dealt with—for example, if two inheritance pathways produce
contradictory or otherwise conflicting results.

2.3 Object-Relation Duality

One of the features of the OrganISM is that it does away with the distinction between relations
and objects (or between predicates and arguments) as much as possible.  We have seen how
relations are represented as objects and how it is therefore possible to make statements about
relations.  Conversely, every object is a relation: in the least case, the object embodies the
cooccurrence relation between the various relations it is linked to by edges.

The two statements
<”tool-for”, “rope”, “rock climbing”>
<”activity-type”, “rock climbing”, “outdoor recreation”>

are related to each other by cooccurrence in the “rock-climbing” object, which contains edges to
each statement.  Thus, “object” and “relation” are really two names for the same thing—an
object with edges to other objects—even though they have intuitively different functions, in
much the same sense that “wave” and “particle” describe different manifestations of a single
underlying physical reality.

Note also that if we add to the above the statement
<”tool-for”, “carabiner”, “rock climbing”> ,

we find that “rope” and “carabiner” have two second-order cooccurrence relations between them:
one via “tool-for” and the other via “rock climbing”.  I call this “second order” because “rope” is
two edges away from “rock climbing”, as opposed to the previous “first order” case in which
<”tool-for”, “rope”, “rock climbing”>

 is only one edge away from “rock climbing”.

There is one apparent distinction to be made between objects and relations, which is that the
order of the arguments of a predicate is usually important, while the ordering of edges in a
cooccurence relation is arbitrary.  But these are really two poles of a continuum.  For some
relations, the order of the arguments is more important than for others:
<”believes-in”, “God”, “Nietzsche”>  is obviously very different from its converse, but
<”married”, “Ronald”, “Nancy”>  is not.  Finally, the second and third edges are reversible in
<”subtractive-color-mixture-result”, “yellow”, “blue”, “green”> .

Approaching the same point from the other side, the order of the edges in a cooccurrence relation
may sometimes be relevant.  When searching for documents related to some term, it might be
useful to place documents in which the term occurs near the beginning at the top of the result list.
If different keywords apply differentially to different documents, it would be best to record that
fact explicitly (perhaps via a “percentage” or “rank” argument to the keyword relation); but the
order of edges in cooccurrence relations may be useful as a backup if explicit ordering
information is not available.
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One way to emphasize the equivalence of objects and relations would simply be to create a
“cooccurrence” relation type and to make the first edge (the predicate) in every object point to it
by default.

At the same time, it will be necessary in some cases to distinguish within a single object between
edges which are ordered with respect to each other and edges which are not.  In a relation object,
for example, the relation type and its arguments form an ordered tuple, which does not include
any edges to statements about the relation (such as a “Source-of” relation) that may be present.

2.4 Program Objects

Since everything is an object, programs or scripts are objects.  A program object can be run with
a single object as an argument (which may contain several logical arguments encoded in some
particular text format, or as a list of other objects, etc.) and returns a single object as a result
(which may of course also contain arbitrarily much raw data and arbitrarily many edges).  Note
that, for compiled languages, both source code and compiled code can be objects; the present
point concerns the latter, which can be invoked to do something.

This approach has several advantages.  First of all, it encourages highly modular, component-
based program development.  In place of monolithic applications, I envision a more dynamic
network of small, manageable parts.  The component approach has already been applied in
systems such as OpenDoc and JavaBeans, and is very much related to the idea of remote
program execution or method invocation available through CORBA and Java.

Second, this approach allows the representation and execution of fully object-oriented systems.
Although an object can take only one argument, the argument is itself an object which can
contain the name of a method to be invoked and a list of arguments to the method.  Given an
object which represents my display screen, for example, I might send a message containing
“DrawWindow” and an edge to a window object, resulting in the appearance of the window on
my screen.  This of course requires that the screen object really has an appropriate DrawWindow
method; unless I have written such a method specific to my particular screen, the method is most
likely inherited through the previously described inheritance mechanisms from a general
“screen” class.

Third, since everything concerning a given application—including its programs—is an object,
the entire application resides within the system itself.  This is in contrast to conventional
databases, for example, where the application-specific code which actually processes the data
usually resides outside the database.  This can make it more difficult to write, less portable, and
so on.  In the case of the OrganISM, the only code which resides outside the database is the
OrganISM engine itself, which is completely abstract with regard to content.  Anything content-
specific is inside.  In this sense the system is an operating environment within which programs
may be run.

Finally, many core components of the OrganISM may themselves be stored inside the system.  In
particular, multiple different search engines may exist as objects, as may display methods for
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different kinds of content.  In the same sense that most components of an operating system are
stored on a disk which is made accessible by the relatively small booting portions of the OS,
most of the components of an OrganISM system can be stored within the system itself.

It is important to note that the loading and execution of program objects is completely dynamic;
there is no hard linking or early binding.  Also, it is not important where the program runs (e.g.
locally on the client machine, remotely on the machine where the object resides, or on a third
server); ideally all the machines in the system together provide one big pool of computing
resources.  Efficiency considerations alone should dictate where and how fast a program runs.
This approach supports and encourages parallelism, and many known algorithms for parallel
computing (e.g. for load distribution, synchronization, and so on) can be applied to the
implementation of the OrganISM.

2.5 Display Components

In keeping with the object-oriented philosophy of the system, objects should be able to display
themselves.  This is accomplished by a relation to a display method (program, object,
component), which is often inherited or inferred.  Arbitrarily many different display methods
may exist to handle a certain kind of content, and different objects of the same type may specify
different display methods.

For example, an image P of a penguin may have a relation
<”mime-type-of”, P, “image/jpeg”> .

Given the appropriate inference rules and a relation between “image/jpeg” and an image display
component, the system can display the penguin image.

Another image might require a more specialized display component, however.  For example,
scientists studying volcanic activity on the moons of Jupiter may want to pass images of the
moons to a more powerful viewer with options for false color, magnification, and various kinds
of image processing.



David Soergel OrganISM Page 14

3 Queries and Inference

3.1 Query, Query Engine, and Result Objects

Since everything is an object, queries and query results are objects.  A query is passed to a query
engine (which is itself a program object as described above).  The query must of course have a
format appropriate for that particular engine—some engines might parse English, others might
implement SQL, some might search for images similar to a query image.  Depending on the
nature of the content and the searching possibilities, there may be a specialized tool for each
engine which provides a user interface for creating queries.  A search engine with a geographical
component, for example, may have associated with it a program which generates queries in the
appropriate format based on user clicks on a map.

To fulfill the promise of object orientation, query objects should themselves  be executable.  This
requires only a relation between the query and the query engine, and a “run” method which
causes the query to pass itself to the engine.  Both can be inherited from an engine-specific query
class or inferred from other known properties of the query.

The query engine produces a single object as a result.  That result object may contain the familiar
list of hits in the case of a search  (perhaps sorted, color-coded, etc.), but can in principle have
any kind of content—perhaps graphs representing statistical results, or graphical maps or trees
representing conceptual relationships, or another query intended for a different engine.  (Types
of queries and the results they return are discussed in greater detail in section 3.7).

In addition to the result object, the query engine creates a relation between the query and the
result, including any relevant contextual information (such as the time).  This makes it easy to
run the same query at different times, or on different engines, and later to compare the results—
since they are all related to the query object.

The need to store every query and every result (and possibly even every intermediate result for
some complex query engines) as an object gives rise to the concern that large masses of
transitory material will overwhelm the primary content of the system.  It may be possible to mark
these objects as temporary and to delete them regularly, but this is not always the best approach;
section 5.6 concerns the issues surrounding the relative permanence of different objects.

3.2 Query Types

Since query engines are just program objects, arbitrarily many different kinds can be created.
Engines might differ in their algorithms, in their specificity with regard to content, in what inputs
they expect, and in what sorts of output they produce.
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There are, however, a few basic query types which are fundamental to the operation of the
system.  These involve searches concerning a simple structure consisting of two objects and a
chain of relations and other objects connecting them.

The following query types have different intuitive meanings for the user, although they can all be
executed by a single underlying search mechanism.

1. Given two objects, find all chains of relations connecting them (up to a given chain length).
2. Given an object and a relation type, find all objects related to the given object by a relation of

the given type.
3. Given a relation type, find all tuples of objects between which a relation of the given type

holds.
4. Given an object, find all objects to which it is related, and the types of the relations

connecting them (up to a computationally feasible chain length or inference depth).

3.3 Inference

These queries seem conceptually simple enough at first, but become much more complex and
computationally expensive when inference rules are taken into account, as they must be.  Now,
every relation involved in a query must be expanded to include all of its equivalent
representations, within computational limits.  For example, if I request a list of all the uncles of
A, the system should return not only those objects which have an explicit “uncle-of” relation to
A, but also those connected by a “father-of” – “brother-of” chain, providing an implicit “uncle-
of” relation through an inference rule.

Since an inference rule generally has the form <”implies”, <A, …>, <B, …>> , and since edges
are generally bidirectional, one can quickly do a one-level expansion from B to the set of all A’s
which imply B.  That is, if we want a list of some person’s uncles, we can run the inference rule
backwards to discover that a “father-of” – “brother-of” chain would suffice to establish uncle-
hood.  Knowing that, we can now search not only for explicit “uncle-of” relations but also for
implicit ones.  Of course, each element of the first-level expansion may itself be deducible from
some other inference rule; for example

<
”implies”,

<”mother-of”, A, C> AND <”mother-of”, A, D> AND
<”father-of”, B, C> AND <”father-of”, B, D> AND
<”male”, D> AND <”not-equal”, C, D>,

<”brother-of”, C, D>
>

So any given statement can have an arbitrarily deep tree of sets of other statements which would
imply it.  When searching for structures of objects and relations matching some pattern, the
system should consider as many levels of expansion of the sufficiency tree as are
computationally feasible.   Since the expansion cannot be arbitrarily deep in practice, inferences
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are made only on a best-effort basis; there may be implications present in the structure which the
system does not find because they are too complex.

Upon making an inference, the system may explicitly store the result for future reference.  In this
case, we must somehow record the fact that the statement was an inference made from certain
premises via a certain rule.  This is accomplished by establishing a relation between the objects
in question.  The relation type is simply the inference rule itself, since the rule expresses the
semantic relationship between the premises and the conclusion.  After the initial edge to the rule,
the next n edges in the relation point to the n arguments of the rule—the premises.  The final
edge points to the derived object.

Inference rules provide a further example of the fundamental equivalence between different ways
of thinking of objects, like the object-relation duality previously described.  In this case, an
inference rule is simultaneously 1) a relation between relation types and 2) a relation type for
inference relations.

If the results of many inferences are stored explicitly rather than left to be rederived at search
time, then the effective depth of backwards inferences will be increased, or the speed of queries
will be increased, or both.  For example, imagine that we can expand five levels of backwards
inference from some node in reasonable time.  If inferences are often stored explicitly, we may
find relations at level five which were themselves generated from five-level inferences.  Thus the
effective depth of the current inference is ten, at the expense of a lot of storage space and truth-
maintenance computation time for explicitly stored prior inferences.

We can see now that inheritance is just a special case of inference, accomplished through the
basic rule
<”implies”, <”inherits-from”, X, Y> AND <R, X, Z>, <R, Y, Z>> .

It is easy to specify that an object inherits some relation types but not others.  This may be
particularly useful for avoiding conflicts in cases of multiple inheritance.  The associated
inference rule is
<”implies”, <”inherits-from”, R, X, Y> AND <R, X, Z>, <R, Y, Z>> .
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3.4 Conceptual Grouping

3.4.1 Optimal Query Results

Some queries may return more results than a human user can deal with.  In this case the system
should be able to group the results into conceptual categories which are as different from each
other as possible, and display a characteristic member of each category.   Depending on the
application, selecting one such member might expand a tree and show characteristic members of
subcategories, and so on.  In many cases the optimal number of results to return will be seven
plus or minus two—the number of slots in human short-term memory (Gio Wiederhold, personal
communication).

There are two problems here: first, how should the system determine conceptual distances
between objects?  Second, how can it find a set of seven (or n) which are maximally different
from each other?  The first problem is particularly complicated by the fact that different
measures of difference will be applicable to different kinds of content, and worse, that different
measures of difference will be interesting to different people even for the same kind of content.

In choosing a rental apartment, for example, one user might be most concerned about location, a
second might be most concerned about price, and a third might be most concerned about noise
level (e.g. nearby railroad tracks).  Rather than doing a standard sort with several levels of keys,
however, the system should find a set of maximally different objects which takes a number of
dimensions into account simultaneously, with different user-specified weights for each
dimension.

This problem can be modeled as a geometric problem in an n-dimensional Euclidean space,
where each dimension corresponds to some variable which is to be used in calculating distances
between objects.  Thus the problem of finding maximally different objects is strongly related to a
number of problems which have been studied extensively, and a number of known algorithms
may be useful in solving it—such as shortest-path algorithms, graph layout algorithms, principal
components analysis, and the Kohonen map algorithm.
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3.4.2 Common and Distinctive Characteristics

The system should also be able to answer the reverse question: given a set of objects, what
characteristics best describe the set as a whole?  The question has two variants.  First, what
characteristics do the objects in the set have in common?  Second, which of these characteristics
are distinctive?

A query of the first sort seeks the smallest set of properties which are related to the largest
number of objects in the set; it seeks a description of the set which bounds it above, so there may
be many nodes which fit the description but are not in the given set.

A query of the second sort seeks the smallest set of properties which describes the largest
number of objects in the given set while describing as few objects outside the set as possible.
This query seeks a description of the set which bounds it below.

3.5 Pipes and Scripts

Since queries take objects as input and produce objects as output, they can be easily strung
together with pipes.  In addition to the standard query types, the system should provide some
simple utility functions which may be useful in processing query results.  One such function, for
example, would take a chain object as input and produce a list of the objects on the chain;
another would filter a list based on some criteria; another might flatten a list of lists.

A complex query object consists of a script which calls other query engines and support
functions.  Such a script might, for example, make a list of all objects related to A by a relation
of type R, then find all chains between the resulting nodes which do not include A, and return a
list of all objects on such chains.  (A and R are specified in the input to this script).  When A is a
businessman, and R is “business  associate”, then this query returns a list of objects having to do
with ways in which A’s business associates are related to each other (e.g. two of them might
work for the same firm, another two might be members of the same club, a third pair might be
cousins, and so on).
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3.6 Neighborhood Searches

A “neighborhood” is simply a set of objects.  In practice the objects in a given set will usually
have some conceptual relationship to each other; indeed the set may often be defined by a
concept search of some sort to begin with (e.g. the set of all rock bands in San Francisco, or the
set of all chapters, sections, and paragraphs of a book).

3.6.1 To-Neighborhood Search

Dagobert Soergel (1998, p.34) describes the “to-neighborhood search” in which the target of a
search is an entire neighborhood rather than an individual object.  For example, a search for all
books concerning both “metallurgy” and “plastics” must return not only those books for which
both keywords are listed but also books which have one chapter on metallurgy and another on
plastics, but which do not list the two keywords explicitly at the book level.  Each entire book is
thought of as a neighborhood, and since the search is a “to-neighborhood” query, it seeks books
which have relations to both keywords somewhere in the neighborhood, even from different
chapters.  This is different from a search for books which contain at least one chapter which
concerns both topics.

The need for the to-neighborhood concept is particularly evident in searches on the World Wide
Web.  It is not possible with current search engines to find an entire web site as a unit which
matches two keywords appearing in different pages.  Search engines catalog only on the page
level, not realizing that pages are often grouped into conceptual and organizational units.  For
example, a search for “casper AND socrates” should return http://www.stanford.edu, since both
terms appear—on different pages—one level below the home page (Gerhard Casper is the
university president, and Socrates is the name of the library system’s online catalog).  Sadly,
none of the search engines I tried found Stanford.

In the OrganISM, this functionality is covered by the search and inference mechanisms.  First,
there should be inference rules which cause keywords to propagate up containment hierarchies,
e.g. from paragraph to section to chapter to book.  Thus, when the search is done for books
concerning two different keywords, the inference mechanisms take care of the upwards
inheritance to the neighborhood level (in this case, the book as a whole).

It may be useful in this case for keyword relations to have a strength which diminishes as the
relations are passed up the hierarchy by inference, but which are appropriately added when
several subsections of a node have the same keyword.  Thus a book with a whole chapter on
metallurgy may be more highly ranked in a sorted result than a book with only one paragraph
about it; and a book with three chapters on metallurgy will be more highly ranked still.



David Soergel OrganISM Page 20

The search for books concerning “metallurgy” and “plastics” is essentially a search for books
which occur on chains between “metallurgy” and “plastics” such that the chains traverse only
relations of type “covers” (or some other keyword-like type) and “contained-in”.

<”covers”, “(MMS Chapter 4)”, “metallurgy”>
<”covers”, “(MMS Chapter 6)”,  “plastics”>
<”contained-in”, “(MMS Chapter 4)”, X>
<”contained-in”, “(MMS Chapter 6)”, X>
<”is-instance-of”, ”book”, X>
<”name-of”, X, “Modern Materials Science”>

So there is a matching chain:

Figure 2.  A chain matching a query for books concerning both metallurgy and plastics.
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The following is a much looser search:

“Give me a list of all the authors whose works might be relevant to both neural networks and
music.”

To execute such a query, the system might find all the chains connecting neural networks to
music (up to a computationally feasible length), flatten the chains into lists of objects, combine
the lists, and select out all of the authors (where “author”, like anything else in a query, is subject
to expansion by backwards inference to include, say, anyone who has ever published a text
document).

3.6.2 From-Neighborhood Search

A user might also want to do a search starting from a neighborhood.  For example, rather than
performing a simple search for documents explicitly matching a keyword, a user may want to
search from the neighborhood of narrower terms of the keyword (Dagobert Soergel, 1998, p. 36).
Thus a classified ad for an “amplifier” will be returned by a search from the narrower-term
neighborhood of “musical equipment”.

This functionality again is covered by the inference mechanisms,  since
<”is-instance-of”, “amplifier”, “musical equipment”>

(or “narrower-term”, etc.)

Thus a search for classified ads for “musical equipment” will automatically return ads for
“amplifiers”, though these may ranked lower than ads that are explicitly for “musical
equipment”.

3.7 Display of Query Results

The type of result that a query produces is arbitrary, but there are a few common types which
deserve mention.

3.7.1 List response

Many queries will return lists of hits.  In the case of a search for all of a person’s uncles, for
example, the result will be a list of objects (encapsulated, as any query result, into a single result
object).  List display components may have various options for sorting, color-coding based on
given criteria, and so on.

The main function of the list display component is simply to call an appropriate list-item display
method for each element in the list and to lay out the resulting panes in a container.  Thus, if a
query returns both text objects and image objects, for example, the list can show both text items
and image thumbnails.
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A search for all chains between objects A and B will return a list of objects, each representing a
distinct chain; similarly a search for all tuples of objects between which some relation holds will
return a list of objects representing the tuples.  In either case, the user is probably not interested
in the encapsulated representations, but rather wants to see each chain or tuple fully specified.
This is accomplished by the list-item display methods associated with chain and tuple objects:
these components should display some appropriate representation of the contents of the node on
which they are called.

In some cases the user may want not only a list of hits but also some information associated with
each hit.  For example, I might request a telephone directory of people who work in my building.
The relevant search is for people who work in my building, but I want their telephone numbers
included when the list is displayed.  This functionality should also be handled by the list and list-
item display components.

3.7.2 Tree response

Some query responses will be best displayed as a tree.  Different display components may
display the tree differently.  One component might show a fan chart or pedigree chart; another
might represent the tree in the collapsible-list form familiar from file managers in Windows or
MacOS.

The simplest tree that might be constructed is the tree of all edges starting from a given node.
The first level would show the relations in which the node participates; the second level would
show the objects participating in each relation, the third level would show relations of each of
those, and so on.  Such a tree can be arbitrarily deep and must therefore be constructed on the fly
by the display component as the user expands or contracts branches.  There would be little point
in repeating a node in every list that occurs two levels below it (because it is obviously a member
of each of its relations); this is a special case that should be filtered out.

The display component should be able to filter which children of each node it displays by
relation type.  For example, I might have an object representing my hard drive; I might ask for a
tree representation of its contents (e.g. filtering for relations of type “contains”) , or I might ask
for a tree showing the derivation of the drive.  Depending on how “derived-from” is defined, this
might include the serial number, the batch number, the model number, other model numbers
from which aspects of the design of this drive were borrowed, the factory, and the manufacturer.
The tree might also include the construction company which built the factory, the engineers who
designed the drive (and their ancestors!), the computers on which it was designed, the
manufacturers of those computers, and so on.  That is, this request could produce the tree of all
factors which eventually contributed to the existence of this hard drive.

Similarly, a filtered tree request starting from some body of water could show a tree of all
waterways which contribute to it and of all factories in the watersheds of those waterways; this
might be useful in tracking down potential sources of a pollutant.
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One issue with displaying trees in this way is that the structures being displayed will rarely be
purely hierarchical; thus, nodes might appear repeatedly in different branches.  For example,

Synergy House
<”Geographical-location”, “Synergy House”, “Stanford University”>

Geographical-location
Stanford University

<”Responsible agency”, “Synergy House”, “Housing and Dining Services”>
Responsible agency
Housing and Dining Services

<”Department-of”, “Housing and Dining Services”, “Stanford University”>
Department-of
Stanford University

<”Political bias”, “Synergy House”, “left”>
…

“Stanford University” appears in two different places in the tree.  This is not problematic, but the
display component should probably make some indication (by color-coding, for example) that
the node is displayed more than once.

3.7.3 Graph response

For many query results, and for navigation in general, a graphical display of nodes connected by
lines may be appropriate.  Laying out such a graph in a sensible way is difficult, but there are
algorithms available which do reasonably well for small numbers of nodes.

As in the case of trees, it will usually be useful to display only relations of certain types.  Further,
relations of certain types can be color-coded or otherwise emphasized.   The display component
should offer navigation options (e.g. zooming in and out, redrawing the graph around a new
node, etc.), and should allow the user to rearrange the graph by dragging nodes around the
screen.

3.7.4 Statistics response

Some queries will provide statistics of some sort that can be displayed in tables, pie charts, bar
graphs, and so on.  Obviously there are very many options for the display of such charts which
the statistics display components might implement.

Most statistics queries will probably concern the content of the system; for example, they might
involve counting the nodes meeting some criteria.  The generation of a chart showing the ethnic
makeup of a university student body would require counting the students in different groups.

Some statistics queries will concern the structure of the OrganISM itself; for example, “show a
graph of the distribution of number of edges per node among nodes in the set S”.
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3.7.5 Animated response

Some programs, such as dynamical systems simulators, may produce a time sequence of result
objects.  Indeed many query engines may return sets of result objects varying along one or
several continuous dimensions, of which time is only one possibility.  An animation display
component would be useful for showing such results.  Animations may be most useful when
displaying statistics or sequences of related images (other result types, such as lists of objects,
are not easily animated).

3.7.6 Combined responses

The response types given above are basic examples; many more complex results can be
imagined.  Simply by combining the basic types above one might produce a graph where the
color coding of nodes and links varies over time with some statistic on each object.  A display
component which did this might be useful, for example, in monitoring the load on computers and
network links in a distributed computing environment.  The same component could be used to
display the relative success of different populations in an ecosystem over time, where relations
between species encode the many interdependencies in such a system.
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4 Features and Benefits

4.1 Expressivity
I believe that the system I have described is capable of expressing any thought which is in
principle encodable in way which lends itself to computation while remaining intuitive for
human users.

<”believes”,
”David Soergel”,
<”for-all”, X,

<”implies”,
<”has-property”, X, “encodable in principle”>,
<”there-exists”, Y,

<”expresses”, “OrganISM”, X, Y>
AND <”has-property”, “computable”, Y>
AND <”has-property”, “intuitive”, Y>
>

>
>

>

Thus the system follows the first design principle (Section 1.3.1).

4.2 Granularity

There is no theoretical upper or lower bound on the granularity with which objects are
represented in the OrganISM.  (In practice, the upper bound on the size of an object is imposed
by the available storage space, and the lower bound is one bit).  For example, the text of an entire
book may be stored in a single object, or the text of each chapter may be stored in objects which
are “contained-in” the book object.  The paragraph or even the sentence level is probably most
appropriate for books, though an exhaustive index would essentially require word-level
granularity.  In principle, an entire book could be represented simply by an appropriately
structured network of relations starting from the letters of the alphabet; but this would obviously
be highly inefficient.

As far as the storage and inference mechanisms are concerned, in any case, the granularity level
is arbitrary, so it can be chosen by human users to be appropriate to the type of content and the
intended use.  Further, granularity can vary widely within the knowledge base: the system may
simultaneously store one book in a single object and another with word-level grains.  For queries
at the book level (e.g. involving author, keywords, and so on) these will behave equivalently.  In
the fine-grained representation, given appropriate inference rules, keywords may propagate up
from paragraphs to the book object; and this is transparent to the user searching for books with
certain keywords.  For queries at the paragraph level, however, the coarse-grained book cannot
be considered, since it contains no paragraphs as far as the information structure is concerned.
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4.3 Normalization

Whenever two objects have identical content (not taking their relations into account), they are
considered to be equivalent.  When this occurs, the two objects must be related by an
equivalence relation.  Two objects with identical content but without an equivalence relation are
not permitted (empty objects—that is, objects with relations but without primary content—are
exempt).

Multiple equivalent objects with different relations are logically treated as a single object which
has all the relations present in the set.  This is accomplished by an inference rule

<”implies”, <”equivalent”, A, B> AND <X, …, A, …>, <X, …, B, …>>

In principle each concept should have only one object representing it, but in practice the sort of
redundancy described above may be useful for efficiency reasons.  In a widely distributed system
with network bottlenecks, for example, one might want to keep multiple copies of commonly
accessed objects in geographically disparate locations (e.g. like the internet’s nameserver
system).  Further, it may turn out that some algorithms for navigating the information structure
can be made more efficient if there is a maximum branching factor—that is, a requirement that
every object have at most n edges.  In this case, an object with more than n logical edges can be
split into multiple objects related by equivalence, each carrying a subset of the edges.

The required equivalence of objects with identical content enforces normalization of the
information structure to second normal form (2NF).  Whenever two objects have a property in
common, they must both be related to the same object which represents the property, or to two
objects representing the property which are related to each other by equivalence.  While
redundant objects may exist, their redundancy must be explicitly recorded.  Thus it is not
possible to introduce errors by updating some object without updating redundant copies of the
same information.

Normalization to third and fourth normal forms is encouraged, but is not necessary or
enforceable.  Indeed efficiency considerations may sometimes favor a “degeneration” to 2NF,
since this can shorten the inference chain needed to establish some often-used statement.  For
example, in a database of sales transactions, it may be desirable for reasons of speed to explicitly
record the total price of each transaction, even though this could be calculated on the fly from the
numbers and prices of the items sold, sales tax, and shipping information.  In this case the
primary data is still in 4NF, and the additional relations which make the structure act in some
ways like 2NF are just explicitly stored derivations.
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4.4 Subjectivity and Uncertainty

Whenever an object is stored in the knowledge base, the system tracks, via a relation, the source
of the information.  In the case of primary data entry, there is simply a relation to an object
representing the user.  A login is required so that these relations can be established automatically;
data entry without a user record is not permitted.  In the case of derived statements, sources are
tracked as previously described.

In addition to making statements in the positive, users can explicitly negate statements simply by
entering their converses.  Thus it may be that some statement would have been considered true
by default, due to some inferences or inheritances, but that the user overrides this default.  The
OrganISM does not make the closed-world assumption, so disagreeing with some statement is
quite different from having no explicit opinion about it.

In cases where the OrganISM is used to duplicate the functionality of database and knowledge
base systems available today, all statements will generally be considered to be very reliable (e.g.
if the inventory database claims that there are 54 sprockets in the warehouse, there is a 95%
chance that this is true).  But ultimately it may be used to describe much larger and more
complex realms in which there are large uncertainties, differences of opinion, and so on.  The
system accommodates disagreements, contradictions, and paradoxes, since it stores any
information it is given without judgement.  Nonetheless, information about the source and
reliability of each piece of knowledge may allow the system to provide useful results.

When using the system, users must specify which sources they trust and to what degree.  This
allows the system to sort and filter results based on their reliability according to each individual
user’s premises, according to probability-network calculations.  There are no absolute truths;
knowledge is always viewed through a certain lens, from a certain perspective, and the
OrganISM requires that this perspective be explicitly specified.

Of course, it is not practical for each user to rate the reliability of each other user or source.  To
overcome this problem, a user might subscribe to a particular reliability rating service; she may
use a weighted average of the views of her friends to establish reliability measures; she may use
an average over all users who have given an opinion on a certain source; and so on.  Conversely,
if a user explicitly enters reliability measures for some sources, and makes these publicly
readable, other users may ask the system to take her views into account in answering their
queries.

There are political and moral dangers lurking here.  For example, a small group of reliability
rating services may end up defining the lenses through which most people see the world, in
precisely the way that governments and mainstream media do today.  Conspiracy theories may
arise and propagate, in the form of a set of reliability ratings such that any statement supporting
some theory is thought to be reliable while any statement contradicting it has zero or negative
reliability.  But these dangers, and many more, exist in the real world; the OrganISM simply
allows us to construct models of them.  The system aims to be maximally democratic and
tolerant of diversity by allowing each user to specify (and publish) his or her own worldview.
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4.5 Ranges of Reference and Ranges of Validity

4.5.1 Time range of reference

Time is represented just like any other knowledge, with relations to standard calendar objects
representing certain times or ranges of time.

<”time-event-occurrence”, “Reunification of Germany”, “October 3, 1990”>
<”contained-in”, “October 3, 1990”, “October 1990”>
<”contained-in”, “October 1990”, “1990”>

The same calendar is used for recording contextual information about the objects themselves,
e.g.
<”object-created-by”, “Reunification of Germany”, “David Soergel”>
<”time-object-created”, “Reunification of Germany”, “May 10, 1998”>

Some time relations might encode recurring events:
<”time-event-occurrence”, “Reunification Day”,

   “October 3 in years following 1989”> , where we have defined the object called
“October 3 in years following 1990” to be a class containing individual days, e.g.
<”instance-of”, “October 3, 1991”, “October 3 in years following 1990”> .  (The
class might also be defined by an inference rule, so that each member need not be specified
explicitly).

Some objects or relations may refer to a certain time period.  This can be recorded through edges
or relations to the calendar, as appropriate:
<”holds-public-office”, “Bill Clinton”,

“President of the United States”, “1992”, “1996”>
<”holds-public-office”, “Bill Clinton”,

“President of the United States”, “1996”, “2000”>

4.5.2 Time range of validity

Some objects may be valid only during a certain time period.  That is, regardless of the time to
which an object refers, its truth value may change over time: it may take effect at one time, and
expire at another time.  Keeping track of the time range of validity for each object will allow us
to ask the system to evaluate a query as it would have been evaluated at any previous time.  That
is, this allows us to ask not only “What are the health effects of cholesterol,” but also “What
would the system have told me about the health effects of cholesterol if I had asked in 1993?”

By default, objects take effect when they are created.  An object’s “time-takes-effect” relation
may refer to a time after the creation of the object, in which case the system will ignore the
object in the interim; and it may refer to a time before the creation of the object, indicating that
the meaning expressed by the object was true in the world before it was encoded.  Similarly, a
“time-expires” relation means that the object no longer holds after the given date.  A “time-
expires” relation should never refer to a date before the creation date of the relation; objects
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cannot be expired retroactively.  Objects should never be deleted, but they may be marked
“expired” as of the current time.

Imagine that a NASA probe discovers next year that, contrary to previous evidence, there is life
on Europa (a moon of Jupiter) after all.  Let
X = <”believes”, “NASA”, <”has-property”, “Europa”, “lifeless”>>

and
<”time-object-created”, X, “May 10, 1998”>
<”time-takes-effect”, X, “1979”>
<”time-expires”, X, “August 12, 1999”>

This means that Europa had been believed lifeless since 1979, when Voyagers I and II looked at
it, but that Galileo’s observations prove this to be false on August 12, 1999.

The time range of validity associated with a statement specifies the time during which the
statement is valid; so the time range during which a person believes a statement can be specified
via the validity range on the belief relation.  Thus, in the example above, the existence of life on
Europa did not change in 1979 or in 1999; only NASA’s belief in it changed.  Presumably the
life itself existed, if at all, for millions of years.

Specifications of time range of validity may be useful in conjunction with relations tracking
multiple different versions of an object.  If the evolution of the object is purely linear, then the
time validity relations will be sufficient to establish the order of the versions; but if the evolution
of the object has a tree structure, independent version specifications will be required.  In any
case, these relations allow the user to request, for example, the Macintosh version of some piece
of software as of some date.

It is important to note the distinction between 1) the time range an object refers to and 2) the time
range when the object is valid.  The former is used to answer queries about the state of the world
at some time according to current information; the latter is used to answer queries about the state
of the world according to the content of the information structure as of a given time.  Although
Bill Clinton will stop being the president in the year 2000, the fact that he was president from
1992 through 2000 will continue to be true.  So if we ask, many years from now, “Who was
president in 1998”, the system should easily respond “Bill Clinton”.  But if we wanted to know
who would be president in 1998 according to the information available in 1990, the system
could provide a wild guess at best.

4.5.3 Ranges on other variables

The same distinction can be made concerning geographic ranges of reference and of validity, or
indeed ranges of reference and of validity on any variable (e.g. demographic groups, members of
certain organizations, and so on).

The geographic reference of
X = <”North-of”, “Oklahoma”, “Texas”>
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is obvious.  The range of validity of this statement is “everywhere on Earth except in Guyana”,
since access to maps is strictly controlled by the Guyanese government.
<”valid-in-geographic-area”, X, “Earth”>
<”invalid-in-geographic-area”, X, “Guyana”>
<”valid-for-group”, X, “Government of Guyana”>

Thus, according to the information available in Guyana, the geographic relationship between
Oklahoma and Texas is unknown, except to members of the government.

Similarly, the sentence
“Schrödinger’s equation for the electron pairs in a superconductor gives us the equations
of motion of an electrically charged ideal fluid.”

is valid only for physicists (and only after a certain date).  No one else is equipped to judge the
truth of the statement, in just the same way that no one was equipped in 1990 to judge the truth
of the statement “Bill Clinton will be president in 1998.”  Learning sufficient physics to evaluate
the above sentence is analogous to waiting a few years to find out who will be president: the
point of view moves from the range where the statement is not valid into the range where it is.

4.6 Truth maintenance

Recall that, whenever an inferred object is stored in the knowledge base, its derivation is stored
as well.  Because all of the relations in question are bidirectional, it is easy to start from a given
object and find all derived objects which depend on it.  That is, we can simply follow any
inference relations (relations whose type is an inference rule) recursively to construct the
dependence tree.  Thus, whenever we delete or modify an object, the system can check, and
delete or update if necessary, any derived statements which depend on it.

We must also take into account the time range of validity of the premises in determining the truth
of an inference.  The conclusion is valid in the time range given by the intersection between the
ranges for all of the premises.  This fact can be expressed by an inference rule; so, like any other
inference, the times of validity for the conclusion can be inferred when needed, or can be
explicitly stored.  If the validity range is changed for some object, the standard truth maintenance
mechanisms update the range for any derived objects.

The subjective nature of truth presents a seemingly more difficult problem.  If one user disagrees
with a statement entered by another user, then by implication he disagrees with anything derived
from that statement as well, unless otherwise indicated.

But this is really not a truth-maintenance problem at all; and the existing mechanisms for
subjectivity and inference cover this case.  In disagreeing with an existing object, the user does
not modify the object, but rather adds new objects encoding his belief that the object is false.
Thus the truth-maintenance mechanisms are not activated.  When the user runs a query, it must
be executed from his specified point of view.  The usual probability and inference mechanisms
will recognize that objects derived from an object with which the user has disagreed have a low
probability of being true according to that user.
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It may occur, on the other hand, that a user disagrees with a premise in some inference but
nonetheless believes the conclusion.  When a user registers his truth judgement of an object, the
user interface might show him the tree of derived statements, giving him the opportunity to
assign independent truth values to the conclusions.

4.7 Semantic Redundancy

The system may contain several objects representing the same concept, or several objects which,
though not identical, are very highly related.  There is no prohibition against redundancy, but all
semantic relationships should be encoded so that the inference engine can take them into
account.

Since relation types are just objects, the system requires no controlled vocabulary, and users can
add new relation types at any time.  Thus, there may be several redundant relation types
present—for example, one user may use a relation type “constructed-by”, while another may
prefer “built-by”.

In order for queries to work properly, the system must know when objects are equivalent. There
are two ways of accomplishing this: we must either create two inference rules saying that each
object implies the other, or there must be a “synonym” relation between the terms and an
inference rule specifying how synonyms work.  There may of course be more complex
redundancies which must be appropriately modelled—between “husband”, “wife”, and “spouse”,
for example.

Although the system can in principle model these relationships, the question arises of who will
enter them.  If I create a new relation type “constructed-by”, how can I discover that “built-by” is
already in the system?  There are several possibilities here.

First, the system may consult an authoritative thesaurus and dictionary to find a list of possible
synonyms and related terms; it can then present these lists to the user with the suggestion that
some semantic relations should be established.

Second, once the new term has been used in a number of relations, the system should be able to
analyze the structure to find terms that are often used in similar contexts; it may then suggest to
the user that these terms might have a semantic relationship.  For example, once I have used my
new term “constructed-by” in a few relations, I can request a list of structurally related terms.  In
response, the system will first construct a list of pairs of objects related via “constructed-by”; it
can then return a list of other relation types which relate the same pairs.  That is, it seeks terms
which directly correlate with “constructed-by”.  Next, the system can follow the “isa” or
“instance-of” hierarchy upwards, seeking correlations at every level.  Thus it can observe that
every pair of objects related by “constructed-by” consists of a physical object and some sort of
manufacturer; since many preexisting relations between physical objects and manufacturers have
the type “built-by”, the system can suggest that “built-by” and “constructed-by” are semantically
related.
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This process becomes more difficult if a term has several different meanings or is used in
multiple contexts.  For example, we can say in English that an argument or proof is “constructed-
by” a person.  While we can model the analogy between physical construction and conceptual
construction, this sort of thing can rapidly lead to intractable complexity if we are not careful.
On the other hand, this is just the sort of calculation that might produce interesting semantic
results.  (For example, Doug Lenat’s Cyc system can make inferences like “the father of a family
is something like the king of a country”.)

Even when two words are related by a synonym relation, they are still separate objects which
may differ in other ways.  This is important for two reasons.  First, different sources might not
agree on the synonymy of two terms; we can track this easily since the synonym relation itself
must be related to its source.  Second, different terms which are generally accepted to be
synonymous may nonetheless express subtly different shades of meaning, or may be used in
different linguistic contexts.  In an alternative representation, one object representing an abstract
concept would have relations to the various words expressing the concept; but this structure
makes it difficult or impossible to track sources of claims of synonymy or subtle differences
between words.  So it is preferable to use a structure which treats each word as a separate entity.

Most instances of semantic redundancy will be much more complex than synonymy: some words
are synonyms of each other some percentage of the time, or to a certain degree, or only under
certain conditions; and some relations will be synonymous with chains of other relations.  These
cases are covered by the inference mechanisms previously described.  Through inference rules
we can express, for example, that in European culture the word “uncle” refers to the brother of a
parent 90% of the time, and to an older male family friend 10% of the time, but that in Chinese
usage the percentages are closer to 40% and 60%, respectively.

4.7.1 Multiple Languages

We can take advantage of the mechanisms for dealing with semantic redundancy to enter
knowledge in many different languages: so the system may contain both “railroad station” and
“bahnhof”.

<”synonym”, “railroad station”, “bahnhof”>
<”language-of”, “railroad station”, “english”>
<”language-of”, “bahnhof”, “german”>

4.8 Data vs. Metadata

Metadata is information used in locating data sources.  The distinction between data and
metadata concerns only how the information is used; there is no inherent difference in the
structure of the information or in how it is stored.

In the OrganISM, query processing involves navigating around the object network in order to
find objects meeting some criteria.  Thus, any objects which are accessed in the course of
answering this query, except for the results themselves, are being used as “metadata”: they direct
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the inference engine (and the user) towards the results.  But the same objects are probably
interesting in their own right, and will be used as “data” in other contexts.  Therefore everything
is simply data related to other data, with no distinction of levels.
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4.9 User preferences

The system should contain an object representing each of its users.  As with any object
representing a person, there may be links to various knowledge the system has about the
person—contact information, relatives, interests, affiliations, publications, personal philosophy,
and so on.

Since user preferences concerning the OrganISM itself are simply facts about the person in
question, these are stored in just the same way as any other knowledge.

As much as possible of the look and feel of the user interface should be stored within the
knowledge base, in the form of display objects, layout managers, and so on.  A user may prefer
one particular image-viewing component over others, in which case this is recorded as a relation
of an appropriate type (e.g. “preferred-image-viewer”) between the user and the component.

The ability to use different display components based on user preferences allows easy integration
of access technologies, such as magnified text and image viewers, text-to-speech converters, and
the like.

Further preferences might be:
<”preferred-screen-layout”, “David Soergel”, L>

(where L is an object containing a set of window types, positions, and sizes).
<”preferred-screen-font”, “David Soergel”, “Times 12”>
<”preferred-autologout-time”, “David Soergel”, “10 minutes”>
<”preferred-email-notification-time”, “David Soergel”, “immediate”>

and so on.

In addition to the general advantages of treating all knowledge in the same way, this approach
allows the user’s preferences to be effective regardless of which terminal the user uses in a
widely distributed network.

In addition to general preferences, a user may store viewing preferences associated with
particular objects.  When viewing a collapsible tree, for example, the pattern of expanded and
collapsed branches may be stored so that the tree will appear the same the next time it is opened
(file listings on the Macintosh behave this way).  Also, a user might view a two-dimensional
network representation of some set of objects, rearrange it by dragging the objects around on the
screen, and save the arrangement as a new object (related to the set of objects being displayed
and to the display component).  Thus, the next time the user views the same set of objects
through the same viewer, they will be properly arranged.

Such arrangements might be used in more complex ways: for example, if the user views a graph
of a superset of a set of objects which he has previously arranged, then the previous arrangement
should be taken into account in laying out the new graph.  Further, two two-dimensional
arrangements, in which the objects are grouped by different criteria, might be synthesized to
produce a three-dimensional representation.
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4.10 System settings

Like user-level preferences, server-level settings can be stored inside the system.  These settings
might include a schedule for automatic backups, the size of the server’s object cache, a list of
administrators to contact in case of a problem, and so on.

4.11 Security

Knowledge about security and privacy of objects is just like any other knowledge, and consists
primarily of relations between objects and users or groups expressing various permissions.  The
OrganISM server is responsible for enforcing these security measures.

<”permission-read”, “David Soergel’s email”, “David Soergel”>
<”permission-read”, “David Soergel’s publications”, “Everyone”>
<”permission-write”, “Project XYZ paper”, “XYZ Project Team”>

These relations mean, respectively, that I have read permission on an object representing my
email; that everyone may read my publications; and that write access to a paper about Project
XYZ is granted to (members of) the XYZ Project Team.

Of course it would be tedious to specify permissions explicitly for each object; but, like any
other relations, permissions can be inherited from other objects, overridden if necessary, and so
on.  So, for example, any object which inherits from a private object is also private unless
otherwise specified.

All forms of access to an object should be denied by default, so permissions must be given in the
positive.  It will nonetheless be useful to explicitly deny permissions in some cases—in order to
override an inherited permission, for instance.

The security mechanisms can be used to implement information hiding.  At the program level,
this is done simply by making certain objects executable but not readable to (most) human users.
Thus users might run a query engine using the publicly available interface, without being
allowed to examine the program object itself.  Of course source code for many programs is
unavailable today; but in this case, even the compiled code is unavailable (this may be useful in a
commercial setting to avoid hacking and reverse-engineering).  The same principle operating at
the method level allows an object to have a public interface while keeping its internal structure
hidden to other methods—except perhaps “friends” and children in a class hierarchy.

4.12 Self-organization and emergent order

We can imagine that there is some average probability that some random two pieces of
information are fairly closely related.  Thus, when we add a new object to the system, the
number of preexisting objects which are related to it is—on average—proportional to the size of
the knowledge base.  Assuming that some proportion of these relations are actually established
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when the object is added, then, the ratio of relations to primary objects increases as the size of
the knowledge base increases.

Imagining for the moment that we add morsels of knowledge to the system in no particular order
(e.g. rather than one topic at a time), the information structure initially consists of a number of
disconnected chunks with no relations between them.  But as we add more objects, the ratio of
links to nodes increases; and as the ratio passes 1/2—that is, when there is one relation for every
two primitive objects—an important phase transition occurs.  At this point, the size of the largest
internally connected subset of the network increases rapidly and begins to approach the size of
the entire network.  (Kauffman 1993)

Thus, when the network becomes large enough, there is a high probability that a chain exists
between any two given objects.  The critical network size at which this occurs depends on the
probability of a relation between any pair of objects.  This is just a mathematical fact about
systems of nodes and links, and is applicable in many realms; indeed Stuart Kauffman has
suggested that life originated when this gelling process occurred in chemical reaction networks.

The crucial question in the case of the OrganISM is that of how to actually establish all the
relevant relations upon adding an object.  Automated addition of relations via inference rules
helps once humans have established some initial relations, but not before.  In order for the
network to gel, we must establish relations between groups of objects which were previously
unrelated.  Since inference rules depend on preexisting relations, they cannot do this.  Inference
rules serve only to increase connectivity within groups that are already internally connected.

Once a human has established a single bridge between two previously separate groups, inference
rules may be able to tie together many other parts of the groups, based on the initial connection.
(Humans are sometimes fortunate enough to have this experience, in which the initial insight of a
single connection between two fields or realms of thought rapidly leads to the realization that
there are many connections between the two fields, or even that what seemed like two separate
realms were really two sets of terminology for the same thing all along).

A significant part of the motivation for the design of this system arises from a faith that a large
knowledge base will in fact gel in this way.  The hope is essentially that, when a new object is
added, a relatively small number of explicitly created relations from it will suffice to establish
the object’s place in the information structure, and that many relations can then be derived
automatically which will make the object really well-connected and hence useful.

For example, if I record the single fact that the body sizes of male and female squirrel monkeys
are roughly equivalent, the system should be able to infer that squirrel monkeys are a pair-
bonding species, and hence that they are likely to exhibit a whole host of particular social
behaviors.  If I later request a list of primate species in which males often care for children, then,
squirrel monkeys should be on the list (ranked by some measure of the probability of this
behavior).  This should occur even if no one has explicitly created or described the category
“pair-bonding species”, since the system should automatically take into account strong
correlations between sexual dimorphism and male parenting behavior in what it already knows
about primates.
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Thus the design of the system is intended to encourage self-organization, emergent order, and
“information resonance”.
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5 Interesting & Difficult Issues

5.1 Object Identification

5.1.1 Object Uniqueness

In general, objects must be identified by some set of criteria concerning either their content or
their place in the information structure (e.g. by their relations).  The problem is that there is no
guarantee that a given set of criteria will return only one object. While objects do have unique
identifiers, these are internal to the system and should not be visible to users.  For a user to
uniquely identify an object, he may need to provide several pieces of identifying information.  A
real-world example of this problem occurs at the Stanford Medical Center, when patients ask for
“Dr. Weiss”.  In fact there are two doctors called “Eric Weiss” who both work in the Emergency
Department.  They are generally distinguished by their middle initials (A or L), their
beardedness, or their hair color.

There should never be two objects in the knowledge base which are completely indistinguishable
based on their contents and relations.  In general, the position of the object in the information
structure will be enough to distinguish it by description.  Also, objects in certain realms may be
given unique identifiers—such as social security numbers, ISBN numbers, and UPC codes.

Even when two objects have the same contents and are related by an equivalence relation, each
individual object must have a distinguishing relation of some sort.  In some cases, equivalent
objects will reside on different servers, in which case a “stored-on-server” relation could be used
to distinguish them.  Otherwise, a simple index relation would suffice, analogous to the “copy 3”
labels found on library book call-number stickers.  These relations will be propagated through
the equivalence relation, like any other relation; but the probability mechanisms will cause the
local distinguishing relation of each object to have a higher certainty than any inferred relations.
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5.1.2 Object Names

"The name of the song is called ’Haddocks’ Eyes.’ "
"Oh, that’s the name of the song, is it?" Alice said, trying to feel interested.
"No, you don’t understand," the Knight said, looking a little vexed. "That’s what the name is called. The name

really is ’The Aged Aged Man.’"
"Then I ought to have said, ’That’s what the song is called’?" Alice corrected herself.
"No, you oughtn’t: that’s another thing. The song is called ’Ways and Means’: but that’s only what it’s called,

you know!"
"Well, what is the song, then?" said Alice, who was by this time completely bewildered.
"I was coming to that," the Knight said. "The song really is ’A sitting on a Gate’: and the tune’s my own

invention."
-Lewis Carroll, “Through the Looking Glass and What Alice Found There”

One potentially confusing consequence of full normalization is that several objects may have the
same name, simply because multiple objects in the real world have the same name.  “Name” is
just another piece of metadata about an object.  So we might, for example, have two completely
different people where

<”name-of”, X, “John Miller”>
<”name-of”, Y, “John Miller”>

In this case each person is represented by an object (e.g. X and Y) which probably has no
primary content at all but has a number of relations representing facts about the person.  A name
is simply a property that a person or thing might have.

How then can we deal with statements like
<”citizen-of”, “John Miller”, “United States”> ?

The “name-of” relation is special because it is frequently used to identify objects; thus it may be
convenient for the system automatically to dereference names when evaluating queries, unless
otherwise specified.  That is, when the expression evaluator comes across “John Miller”, it
should locate the object containing the text “John Miller”, follow any “name-of” relations, and
return the set of named objects.  If we wish to make a statement or query concerning the name
itself, rather than the named person or people, we might use a special notation which suppresses
the name dereference, such as “”John Miller””.

This automatic dereferencing of names is just a shorthand for a more complex query or
statement.  Thus,
<”citizen-of”, “John Miller”, “United States”> is equivalent to

<”name-of”, A?, “”John Miller””>
<“name-of”, B?, “”United States””>
<”citizen-of”, A, B>.

This statement means: find objects called “John Miller”, find objects called “United States”, and
make the former citizens of the latter.



David Soergel OrganISM Page 40

<”citizen-of”, “John Miller”, “United States of America”>  would establish the same
relation(s), since “United States” and “United States of America” are just alternative names for
the same country.

Depending on the implementation, the above assertion might result in a new “citizen-of” relation
for every John Miller in the system, when we probably intended to affect only one object or a
small set of objects.  If a name refers to multiple objects, how can we uniquely identify one of
them?  In this case the user must provide additional information.  The system can help by finding
distinguishing characteristics and asking, for example, “Do you mean John Miller, the bricklayer
from Portland, or John Miller, the stockbroker from Chicago?”

The system may also make assumptions based on the logical distances between the objects in
question and the user, since the user is more likely to make statements about objects which are
somehow related to him or her, or about which she has made other statements recently.  For
example, if the user is married to someone named John Miller, then the system can safely assume
that this user’s references to “John Miller” and even to “John” are meant to refer specifically to
her husband, unless otherwise specified—unless of course someone else in the user’s conceptual
neighborhood (e.g. her son, her dentist, etc.) is also named “John Miller”.

5.2 Deletion

Objects should be deleted only rarely if at all; in general it will be preferable to leave the object
in the knowledge base but to mark it obsolete, as described in section 4.5.

In cases where it is really necessary to delete an object, considerations of referential integrity
require that the deletion be carried out very carefully.  Most importantly, how deep should the
deletion be?  If an object has relations specifically describing it, then those relations may become
useless when the object is deleted—so perhaps direct relations should be deleted as well.

But in some cases these relations may contain information which is useful even without the
deleted object, and this information should be salvaged.  For example, suppose that we have a
relation
<”gave-to”, “Fred”, “Barney”, “Car”>

and that we delete “Barney” from the knowledge base.  Even without the edge to “Barney”, the
relation expresses the interesting fact that Fred gave his car away—information that would be
lost if we automatically deleted every relation involving “Barney”.

In other cases, a deletion invalidates not only the direct relations but even objects several
relations away.  For example, deleting a document probably involves deleting all of its
constituent parts (but not necessarily!).  Certainly any derived objects, which may be arbitrarily
distant, will need to be updated or deleted via the truth maintenance mechanisms.

Thus, the appropriate depth of deletion is completely dependent on the particular content, and it
will generally be necessary to ask the user how much to delete.
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5.2.1 Salvage by Substitution

One possible method for salvaging information surrounding a deleted object is simply to keep all
of its relations but to replace edges to the deleted object with edges to one or several of the
object’s parents in the “isa” or “instance-of” hierarchy.  So, for example, if we delete the “cat”
object, we can retain all of the relations concerning cats, replacing the reference to “cat” with a
reference to “mammal”.

There is a danger of overgeneralization here, however: it may be necessary to distinguish
universal from existential scope in the resulting relations.  Given a relation
<”makes-sound”, “cat”, “meow”> ,
deleting “meow” results in <”makes-sound”, “cat”, “sound”> , which seems reasonable.  But
deleting “cat” results in <”makes-sound”, “mammal”, “meow”> .  The original statement about
cats simply meant “all cats meow”, but the new one seems to mean “all mammals meow”.  Since
“cow” inherits from “mammal”, the inference mechanisms will now conclude that cows meow,
simply because we deleted “cat”.  This is an example of the difficulties that arise when the
quantification of relations between classes is ambiguous, as discussed in section 5.4.

5.2.2 Salvage by Placeholders

To avoid possible problems associated with substituting instance-of parents for deleted items in
relations, while keeping the relations, one option is simply to substitute a meaningless
placeholder.  The carries less information, but is also less likely to result in erroneous inferences.
This would give rise to relations like
<”gave-to”, “Fred”, -----, “Car”> .

5.2.3 Salvage by Inference

Using placeholders is really not ideal, however.  If the above relation really contains interesting
information, and if the system is properly normalized, then there should be a relation which
encodes the meaning without empty arguments:
<”gave-away”, “Fred”, Car”> .
As long as “Barney” was present in the knowledge base, this fact was derivable via an inference
rule, but it must be explicitly stored before “Barney” is deleted.

Thus, whenever an object is deleted, all inference rules should be found in which the object plays
a role in the premises but not in the conclusion; and the results of invoking these rules should be
stored.  Assuming that we have a rule
<”implies”, <”gave-to”, X, Y, Z>, <”gave-away”, X, Z>> ,
we should invoke it and store the result every time an object is deleted which fills the Y place in
the rule.
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5.2.4 Inheritance

Inherited relations can be salvaged by the above mechanism.  If A inherits properties from B, and
B is deleted, then we must explicitly record that A has the relevant properties.  This is
accomplished by the “salvage by inference” process operating on the basic inheritance rule
<”implies”, <”inherits-from”, X, Y> AND <R, X, Z>, <R, Y, Z>>

Since X occurs in the premises but not in the conclusion, this rule should be invoked and the
results stored every time an object is deleted which fills the X place in an inheritance relation.
This will cause inherited properties to be salvaged when the inheritance parent is deleted.

5.3 Copy

There are several issues surrounding the duplication of objects.  First, when an object is copied,
it must be determined how deep the copy should be.  If I make a copy of a book, does this
involve only a new object with relations to all the existing chapters, or must the chapters be
copied as well?  Second, is the copy simply a duplicate, expressing the same meaning, or is it to
be modified in some way to represent a different concept?

5.3.1 Copy as Equivalent

Because objects with identical content are considered equivalent, and must be related by an
equivalence relation (as discussed in section 4.7), a copy of an object with primary content will
automatically be equivalent to its original.  It may be desirable to make geographically distant
copies of this sort, for example, for efficiency reasons.  While the copy must have an equivalence
relation to the original (and a copied-from relation, to facilitate source tracking and truth
maintenance), the relations of the original object need not be duplicated or referred to in the
copy, since they can be reached through the equivalence relation.

The relations concerning an object are just objects themselves, so the same efficiency
considerations which lead to the copying of some object may apply to its relations as well.  If a
network bottleneck is the motivation for a copy, for example, copying an object without also
copying its relations may produce little benefit, since the relations will still need to be retrieved
from the original source through the network.  (On the other hand, copying only one object may
produce a great benefit, e.g. if the object is very large but its relations are very small).  Further, it
may be desirable to copy an arbitrarily large set of objects surrounding the first copied object.
The OrganISM system may suggest a certain copy depth based on efficiency calculations, but
ultimately the decision must be left up to the user.

A good user interface can assist the user in determining the depth of copy.  For example, a
collapsible tree representation could be used, in which any object selected for copying can be
expanded to allow selection of the objects pointed to by each of its edges.  Thus, starting from
some object, the user could choose relations on the first level, related objects on the second level
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(where there will be at least one—the relation type—per relation, and probably more), relations
of related objects on the third level, and so on.

When relations are copied along with an object, they must be modified to refer to the copied
object rather than the original, and the copied object must be modified to refer to the copied
relations rather than the original ones.

5.3.2 Copy as Template

In some cases the intent may be not to create equivalent objects but rather to make a copy as a
template to be modified.  When an object is copied for this purpose, some of its relations will
probably need to be copied as well, since the new copy will be orphaned without them; as before,
the user must select which relations should be kept in the copy.

If a user attempts to update the contents of an object which has equivalency relations, the system
must ask whether it should update all equivalent objects as well, or whether it should sever the
equivalencies.  The latter choice allows the user to copy an object for use as a template, modify
it, and save it without affecting the original.  Even if the object has no primary content, adding,
deleting, or modifying its relations should result in the same question: should the change apply to
all equivalent objects, or only to this one (in which case the equivalencies must be severed)?

An equivalence relation is essentially a bidirectional “inherits-from”, and thus allows relations to
propagate implicitly through the inference rule
<”implies”, <”inherits-from”, X, Y> AND <R, X, Z>, <R, Y, Z>> .
As a result, severing them (either by marking them obsolete or by outright deletion) can be
dangerous, since this can cause relations that should hold for an object to become inaccessible.
The “salvage by inference” process (section 5.2.3) solves this problem, however: when an
equivalence relation is severed, any implicit relations which would otherwise be lost are
explicitly propagated.

When a copy of any object is made, the copy should be related to its original by a “copied-from”
relation.  This allows proper source tracking by distinguishing objects created by a user from
objects merely copied by the user, and more generally by distinguishing originals from copies.

5.4 Quantification in Relations between Classes

Apparently there are implicit quantifications in English such that, in a statement “A verb B”,
where A and B denote classes or categories, A is interpreted as universal (e.g. for all A), but B is
interpreted as existential (e.g. for some B), resulting in different quantifications for active and
passive voice.  So “music is written by composers” means “for every piece of music there exists
a composer”, while “composers write music” means “for every composer there exists a piece of
music”.  Which does <”writes”, “composer”, “music”>  mean?  Apparently “writes” and
“written-by” are really not strictly inverse relation types when they concern classes rather than
individuals.
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These different quantifications could be explicitly modeled with inference rules; for example,
instead of <”writes”, “composer”, “music”>  we could say either

<”forall”, X,
<”implies”, <”instance-of”, “composer”, X>,

<”there exists”, Y,
<”instance-of”, “music”, Y> AND <”wrote”, X, Y>

>
>

>

or

<”forall”, Y,
<”implies”, <”instance-of”, “music”, Y>,

<”there exists”, X,
<”instance-of”, “composer”, X> AND <”wrote”, X, Y>

>
>

>

or both, depending on which we mean.  But this is obviously much more complex and tedious, so
it would be nice to find a reasonable default behavior for
<”writes”, “composer”, “music”> .

5.5 Negation

When working with any large database or knowledge base, the implementation of the Boolean
“not” operator (applied in the context of the entire universe) is impractical, for two reasons.
First, it can easily return enormous result sets—often approaching the entire contents of the
system (e.g. there are one million people who live in San Francisco, and six billion people who
don’t).  Second, while it is easy to navigate relations that exist explicitly or can be inferred, it is
computationally expensive to navigate based on relations that don’t exist, because this can
require testing large numbers of objects for the existence of the relation.

In the OrganISM, “not” is supported only in the sense of subtraction, e.g. “A and not B”; it is
assumed that this will suffice in practice.  One must have a tractable set at hand in order to
subtract things from it, so the result will always be of tractable size as well.

It is worth pointing out that the evaluation of an expression involving subtractions can be
speeded up by algebraic manipulation of the expression to minimize the sizes of the sets being
subtracted.  For example, since subtraction of an m-element set from an n-element set is o(nm),
the time for (A-B)-C is  size(A)size(B) + size(A-B)size(C), while
the time for (A-C)-B is size(A-C)size(B) +   size(A)size(C), and
the time for A-(B+C) is mostly size(A)size(B+C).
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Which of these alternatives will be fastest depends on the relative sizes of the three sets and on
their degrees of overlap.  For operations on large sets, it may be worth doing a preliminary
calculation to estimate the overlaps in order to choose the best subtraction method.

5.6 Temporary Objects

A total prohibition against deleting objects will rapidly lead to an overwhelming amount of junk
in the knowledge base, since every query, every query result, and perhaps many intermediate
results produced by query engines will be saved.  So the prohibition must be relaxed somewhat
to exempt objects which are reproducible.

There are various reasons why some queries and query results should be stored, however.  If a
query operation is very computationally intensive, frequently used, and always produces the
same result, then of course the result should be stored explicitly out of efficiency considerations.
In addition, users should have the option of conferring permanence on any query or query result.

For some query types, the execution of a preexisting query object should result in the immediate
display of the stored result from the previous execution of the query, with an indication of the
time when it was executed (e.g. “valid as of 15 hours ago”).  Only if the user requests an updated
response does it need to be computed again.  If prior results are stored for a given query, this also
allows the system to rapidly answer the query as of a previous execution time, without
recalculating the result using the time-dependent validity machinery (Section 4.5).

Rather than making derived objects either completely fleeting on the one hand or completely
permanent on the other, we can assign varying lifetimes to objects, depending primarily on the
computation time needed to reproduce them and the frequency with which they are accessed.
Thus an object X might have a relation
<”time-to-delete”, X, “December 15, 2000”> .
The way in which these lifetimes are calculated will determine the balance between query speed
and storage space, and can be adjusted as necessary.  A garbage collection mechanism can delete
objects when they come to the end of their specified lifetime.
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6 Example Applications

Movies

<”director-of”, “The Passionate Adventure”, “Hitchcock”>
<”year-released”, “The Passionate Adventure”, “1924”>

“Give me a list of all movies such that members of the cast later married each other”.

Geography

<”lat-and-long-of”, “Cupertino”, “ 37’21 N, 121’57 W “>
<”contains”, “Santa Clara County”, “Cupertino”>

“What is the distance from Cupertino to New York City?”

“What is the telephone number of the U.S. Congressional Representative for Cupertino?”

“What is the nearest national park to Cupertino with an average visitor density of less
than one person per square mile?”

Foods

<”ingredient-of”, “Milk Chocolate”, “Cocoa Solids”, “30%”>

“I’m allergic to curry in concentrations higher than 10 ppm.  Which Indian restaurants
within a 30 mile radius of my home serve at least five entrees that I can eat?”

Philosophical argument maps

< “believed-in”, “David Hume”, “Empiricism” >

A = <”instance-of”, “brain”, “computer”>
B = <”implies”,

<”has-capability-sometimes”, “brain”, “consciousness”> AND A,
<”has-capability-sometimes”, “computer”, “consciousness”>

          >

<”believes”, “Zenon Pylyshyn”, A>
<”believes”, “Zenon Pylyshyn”, B>
<”disbelieves”, “John Searle”, A>
<”believes”, “John Searle”, B>

“If I believe both Immanuel Kant and Michael Polanyi, on which points do contradictions
arise?”
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Note that the same mechanisms can be used to have an ongoing intellectual discussion
between multiple users of the system, not just to encode arguments which have already
occurred.

Encoding arguments in this way should have the effect of focussing the discussion on the
root issues of a disagreement, and allows immediate reference to primary sources, along
with reliability measures of those sources.

Mathematical theorems

<”derived-from”, “Theorem A”, “Theorem B”>
<”implies”, “Theorem C”, “Theorem D”>

“I have disproved theorem X.  What other theorems have I thereby disproved by
implication?”

Email and newsgroups

<”message-from”, X, “Josh Peterson”>
<”message-to”, X, “Robin Hughes”>
<”message-subject”, X, “Shocking Gossip”>
<”message-text”, X, “blah blah blah”>

“Show me any messages I haven’t read yet if they’re from my closest friends or concern
topics that I’m particularly interested in”.

Linguistics and natural language processing

<”instance-of”, “adjective”, “red”>
<”syntax-substitution-rule”, “noun”,

<”syntax-block”, “adjective”, “noun”>>

“Is the sentence ‘Colorless green ideas sleep furiously’ well formed?”

<”implies”, <”has-property”, X, “colorless”>,
<”lacks-property”, X, “color”>>

<”instance-of”, “green”, “color”>

<”instance-of”, A, “ideas”>
<”has-property”, A, “green”>
<”has-property”, A, “colorless”>

“Is the sentence ‘Colorless green ideas sleep furiously’ sensible?  What does it mean?”

<”date-occurred”,
<”said”, “Jeffrey”, “I’m going to buy some milk”>,
“August 24, 1998” >

“Is there milk in Jeffrey’s refrigerator on August 23?”
“Is there milk in Mary’s refrigerator on August 25?”
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(Maybe; the system might know that Mary and Jeffrey share a refrigerator).
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History and Culture

<”date-event-occurred”, <”invaded”, “France”, “England”>, “1066 AD”>
<”headed-movement”, “Gandhi”, “Satyagraha”>
<”influenced”, “Zoroaster”, “Nietzsche”>
<”instance-of”, “Allan Ginsberg”, “Beat Poet”>

“What relationships might have existed between Georges Braques and futurist
architects?”

Politics

<”received-contributions-from”, “Newt Gingrich”, “Philip Morris, Inc.”>
<”friend-of”, “Bill Clinton”, “Vernon Jordan”>
<”causes”, “clearcutting”, “erosion”>

“Who are the ten most influential people in determining American policy concerning
economic aid to Israel?”

“For what reasons might Representative Peter DeFazio in particular be opposed to
NAFTA?”

“What arguments might I use in lobbying against the sale of U.S. Forest Service lands to
logging companies?  What evidence can I present to bolster my arguments?”

Chemical reaction networks

A = <”chemical-reaction”, “iron”, “oxygen”, “iron oxide”>
<”catalyzes”, “water”, A>

“What series of reactions might have produced saccharine, given the materials available
in my lab?”

Molecular biology

<”binds”, “saccharine”, “amino acid sequence S”>
<”contains”, “Protein Q”, “amino acid sequence S”>
<”instance-of”, “Protein Q”, “ligand-gated sodium channel”>

Gene regulation networks

<”encodes-protein”, “Gene K”, “Protein K”>
<”activates”, “Protein K”, “Gene L”>

Neural networks

<”synapse”, neuron 358, neuron 2044, 0.38>
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Physics

<”related-to”, “gravitational lensing”, “dark matter”>
<”origin-of”, “gamma ray bursts”, “unknown”>
<”maybe-origin-of”, “gamma ray bursts”,

“coalescing binary neutron stars”>

“What are the current major open questions in general relativity?  Who is actively
working on them?”

“What subjects would I need to study in order to understand the latest developments in
quantum electrodynamics?  What texts cover these subjects?”

Operating systems

Just as software processes and hardware devices are represented as files in UNIX, they
can be represented as objects in the OrganISM.  Thus priority information, ownership and
security restrictions, and so on can be represented just like any other information.

File system hierarchies and GUI environments

<”icon-for”, my todo list, salamander icon>
<”contained-in”, my todo list, “Personal files”>
<”preferred-window-size”, my todo list, “250”, “300”>

Programming

One could use the OrganISM to make maps of programs during development: not just
class hierarchies, but containment hierarchies, reference nets, which methods call which
other methods, possible paths for exceptions to travel up the stack, links everywhere to
relevant documentation, and so on.

Prolog

Prolog can be implemented fairly straightforwardly in the OrganISM.  The representation
and inference mechanisms are already in place, so this is mainly just a question of parsing
Prolog syntax.
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7 The Implementation

7.1 Overview

I have begun to implement a working prototype of the ideas described in this paper.  The
implementation has a three-tiered structure, consisting of a storage server, a mediator, and a
client.  The server simply stores and retrieves objects, much like a web server.  The mediator is
responsible for all of the interesting computations.  The client provides the user interface, like a
web browser.

The three components communicate through network sockets, and the connections are many-to-
many.  That is, a server can simultaneously serve many mediators; a mediator can communicate
with many servers; and a mediator can serve many clients.  (A client needs to communicate with
only one mediator at a time.)

The code is written entirely in Sun’s Java 1.1 programming language, and uses the Swing 1.0.1
library for the user interface.  In principle all three components should be able to run on any
machine with an appropriate Java virtual machine.  Unfortunately, there are slight
incompatibilities between different vendors’ VMs; as a result, the client currently runs only
under the Sun VM.  Problems of this sort should evaporate as the Java language matures.

7.2 Object Identifiers

An object is uniquely identified by the server it resides on and an index number.  An object
identifier follows the URL convention and has the form

istp://servername/objectnumber

    e.g. istp://satori.stanford.edu/25934
the protocol “istp” (for “Information Structure Transfer Protocol”) is described below.

These identifiers should not be visible to human users.  Users should identify objects by their
place in the information structure (e.g. by name or some other attribute), as described in section
5.1.  Thus, users can identify objects in a location-independent way.

But clearly the system must have a lower level of location-dependent identification, in order to
be able to actually locate the objects; that is what these object IDs are for.
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7.3 Object Structure

The current implementation can deal only with plain text objects.  Multimedia capabilities will
be added later.

At the lowest level, an object is stored as a text string of the form
<ISML>
<HEAD>

head
</HEAD>
<BODY>

body
</BODY>
</ISML>

The head can contain edges of the form
<Link URL>

     e.g. <Link istp://satori.stanford.edu/25934>

The body can contain arbitrary text, but angle brackets and backslashes must be escaped with a
backslash.  When multimedia capabilities are added, the body will contain an arbitrary binary
blob.

The body must contain all of the object’s edges (and may associate them with particular words,
areas of a picture, and so on, as in HTML).  The edges are redundantly stored in the object head
for efficiency: inferences and other calculations based only on the topology of the information
structure can be done based only on the head, without needing to load or parse the object body.
The contents of the body are authoritative; whenever the body is changed, the head must be
regenerated from it.

In the current implementation, the object body consists of plain text with interspersed links of the
same form as the links in the head.

7.4 Server

The server listens for connections on a network socket (number 7878 at the moment).  Once a
connection is established, the server allows simple operations (read, create, update, delete) on the
local object store.

In the current implementation, the local store is simply a file with objects stored in it
sequentially.  An index allows rapid access by object number.  When an object is deleted, its
space is reclaimed.

There is a working JDBC interface for the server, so any database for which a JDBC driver exists
(e.g. any reasonably popular database) may be used for backend storage.  Because of the extra
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cost of creating SQL queries and parsing their results, however, the direct file approach seems to
be faster for now.

In principle the server need not store the objects in any particular format, so long as it conforms
to the transfer protocol.

7.4.1 Information Structure Transfer Protocol (ISTP)

The transfer protocol currently supports: echo, close, read, create, update, and delete.  There is
no “write” command; writing a new object is accomplished by creating an empty object and then
updating it.  In addition to these, there should be a command (e.g. “readheader”) for reading only
the head of an object without the body, but this is not yet implemented.

The syntax is as follows:

Echo: Returns the given string.
Query: echo \n string \n \0

Return: string \n \0

Close: Closes the network socket.
Query: close \n \0

Read: Returns the full text of the requested object.
Query: read \n idnumber \n \0

Return: objectstring \n \0

Create: Creates an empty object and returns the number.
Query: create \n \0

Return: created idnumber \n \0

Delete: Deletes the identified object and returns a verification.
Query:  delete \n idnumber \n \0

Return:  deleted idnumber \n \0

Update: Updates the identified object and returns a verification.
Query:  update \n idnumber \n objectstring \n \0

Return: updated \n idnumber \n \0

In the event of an error, the server may return an exception:

Exceptions:
Return: exception notfound \n \0

Return: exception permissiondenied \n \0

Return: exception generalfailure \n \0
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7.5 Mediator

The mediator is responsible for queries, inference, and other computations on the contents of the
system.  Requests for these computations are given in the Information Structure Scripting
Language (ISSL), which the mediator must interpret.

7.5.1 Cacheing

The mediator keeps a model of the universe (e.g. all of the data on all of the servers) in memory
and operates on this model.  Of course, only a limited number of objects are actually cached at
any given time; whenever an object is needed to answer a query, the mediator automatically
retrieves the object from the appropriate server.  Thus, the user of the mediator has the illusion of
interacting with a single server which contains all of the data in the entire system, even though
the data is in fact stored on many different servers.

Some objects are used for alphabetic, temporal, or other indexes, and so have special status:
these objects are stored in a separate cache and are not pushed out by other objects.  Since index
searches occur frequently, it is beneficial to have as much as possible of the index cached in
memory in advance.

It is possible to preemptively cache objects which are likely to be requested—that is, objects
which are connected by edges to objects which actually have been requested (to some given
depth).  This could provide significant speed improvements for the user, at the expense of
increased network activity and memory allocation.  Preemptive cacheing has not yet been
implemented.

7.5.2 Tight bind to server or client

Although the mediator can communicate with many servers over the network, it may happen,
especially during the prototyping phase, that a particular mediator communicates primarily with
a single server running on the same machine.  In this case, it is possible to combine the two into a
single program, bypassing the network step completely and thereby increasing speed.

In other circumstances, the user may benefit from using a client combined with a mediator.

The current prototype code supports both combinations, as well as the separated three-tiered
model.
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7.5.3 Alphabetic Index

The mediator supports an alphabetic index encoded in the information structure itself.  Whenever
an object is updated, the mediator automatically reindexes it based on the initial text contained in
the object.  The index is case-insensitive, and tags (e.g. anything in angle brackets) are ignored.

The index has a tree structure, where each branch has a relation type associated with a letter of
the alphabet.  Thus, to look up an object beginning with “Electricity”, the mediator begins from
the index tree root and follows a relation of type “IndextreeAlpha Relationtype E” to the object
“e”.  From there, it follows another relation of type “IndextreeAlpha Relationtype L” to the
object “el”.  The process continues until the mediator reaches the most granular level of the
index (perhaps at “electri”), at which point it follows all of the “IndextreeAlpha Leaf” relations
to find the desired object.

The root of the index tree, as well as the alphabetic relation types, have predefined ID numbers
which are hard-coded in the mediator.

The number of leaves from a given node in the tree is limited to 32; an attempt to add a 33rd leaf
causes the node to be decomposed—that is, the index tree is expanded by one level from that
node, and all of its leaves are reindexed.

If there are more than 32 equivalent objects (e.g. containing the same text), then this
decomposition process will recurse forever.  This is a bug which needs to be fixed.

7.5.3.1 Full text search

The alphabetic index described above allows searching only on the initial text of each object.  It
must be expanded to allow full text search, but this has not yet been done.

One way of accomplishing this is to make a distinction between “IndextreeAlpha Begins-With
Leaf” and “IndextreeAlpha Contains Leaf”, where the latter relation type links each final index
branch with every object that contains a word beginning with the given string.  This approach
obviously requires enormous storage overhead.  Each word, with an average length on the order
of six or eight bytes, requires at least one indexing relation, with an average length of perhaps
sixty or eighty bytes.

Thus it is probably necessary to rely on standard text search methods, though an index tree of
limited depth (e.g. two or three levels) might help significantly in selecting which objects to do a
full search on, without producing overwhelming overhead.

7.5.4 Time Index
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A similar index tree should be constructed for temporal information; the same mechanisms for
indexing, decomposing, and retrieving will apply.  The time index is not yet implemented.

7.5.5 Mediator Protocol

The protocol for communication between the client and the mediator is similar to that for
communication between the mediator and the server.  The mediator protocol supports additional
commands for retrieving links and for executing ISSL scripts.

The syntax is as follows:

Echo: Returns the given string.
Query: echo \n string \n \0

Return: string \n \0

Close: Closes the network socket.
Query: close \n \0

ReadText: Returns the body of the requested object.
Query: readText \n objectid \n \0

Return: objectstring \n \0

ReadLinksAsHtml: Returns a list of the object’s links, formatted in HTML.
Query: readLinksAsHtml \n objectid \n \0

Return: linksAsHtml \n \0

Create: Creates an empty object and returns the number.
Query: create \n \0

Return: created objectid \n \0

Delete: Deletes the identified object and returns a verification.
Query:  delete \n objectid \n \0

Return:  deleted objectid \n \0

Update: Updates the identified object and returns a verification.
Query:  update \n objectid \n body \n \0

Return: updated objectid \n \0

RunISSL: Runs the script contained in the given object and returns the id of the
result object.

Query:  runissl \n objectid \n \0

Return: ranissl resultid \n \0

In the event of an error, the server may return an exception:

Exceptions:
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Return: exception notfound \n \0

Return: exception permissiondenied \n \0

Return: exception generalfailure \n \0

7.6 Client / User Interface

The user interface is currently rather rudimentary.  It allows the viewing, creation, updating, and
deleting of text objects, as well as execution of scripts.

Figure 3.  A view of the “distributor” relation type, which has edges to
relations encoding the distributors for various Hitchcock movies.

When viewing objects, the interface shows two windows: the body of the object appears in one
window, and its relations appear in the other.  The text of the relation object itself is shown (this
is usually “[Untitled]”, since relation objects are usually empty), followed by the names of the
related objects in angle brackets.  Whenever an object has a “name-of” relation, its name is
shown; otherwise the text of the object itself is shown.  The user can click on any object shown
in a relation to redraw the screen around that object; so the system can be browsed like the web.

If the user presses the “evaluate” button, the client asks the mediator to execute the contents of
the object being viewed as an ISSL script, and displays the results.

The client currently runs as an application but not as an applet due to technical snafus; again, it is
hoped that the maturing of Web browsers and their associated Java virtual machines will
alleviate this problem in the near future.

There is not yet a good graphical interface for establishing relations between existing objects; the
best way to do this currently is through ISSL.  It is also possible to manually establish edges
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between objects by typing them in the edit window; but this allowed only temporarily for testing,
since the object identifiers should eventually be invisible to users.
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7.7 Information Structure Scripting Language (ISSL)

Note: at the time of this writing, the working version of the language is somewhat less capable
and has a slightly different syntax than the version described here.  Changes in the code to
account for the improved language are in progress.

7.7.1 Grammar

The grammar for ISSL is as follows:

S -> expression ;\n

expression ->

expression -> variableAssignment

variableAssignment -> variable = expression
variableAssignment -> variable = new

expression -> expression expressionremainder

expressionremainder ->

expressionremainder -> + expression   (plus/or)
expressionremainder -> - expression   (minus)
expressionremainder -> # expression   (intersection)

expression -> .*
expression -> “ expression”
expression -> ( expression)
expression -> [ expression]
expression -> { ntuple}

ntuple -> expression , ntuple
ntuple -> expression

expression -> evaluate( expression)
expression -> variable

variable -> $.*

pattern -> expression  (containing $_  or $1 , $2 , $3  etc.)

expression -> foreach( expression, pattern)
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7.7.2 Description

The interpreter evaluates one line at a time.  A line consists of an expression (which may have
any number of subexpressions), and is terminated by a semicolon.

An expression always returns an unordered set of object IDs.  Many expressions need return only
one ID, but they return it in the form of a set of size one.

An expression may be a variable assignment.  There is only one variable type: like an expression,
a variable represents a set of object IDs.  The return set of any expression can be assigned to a
variable; the assignment operator itself also returns the assigned set.  When the reserved word
new is used in an assignment, a new, empty object is created, and its ID is returned as the single
member of the ID set.

Since expressions return sets of IDs, they can be added, subtracted, or intersected.

If an expression consists purely of text, it returns the set of objects matching that text exactly.
Thus Fido returns a set of all objects whose text is exactly Fido.

The quotation marks return the set of objects named by the objects in the argument set.  That is,
the interpreter starts from the objects in the set inside the quotation marks, follows all “name-of”
relations forwards, and returns the resulting set.  Thus “Fido”  returns a list of all objects named
Fido.

Parentheses allow grouping of expressions.

Square brackets encapsulate the contained set.  That is, they represent the contained set in a
single object, with relations of type “set-element” to each of the elements.  The return value is a
set with the new container object as the only member.

Curly brackets represent ntuples (e.g. relations).  The elements of an ntuple are separated by
commas.  An ntuple is written in ISSL as a list of expressions—that is, a list of sets of object
IDs.  But in fact a relation consists of an ordered list of IDs, not of sets of IDs.  Thus, when
presented with an ntuple, The ISSL interpreter evaluates it for every possible combination of IDs
in the given sets.

An expression containing no unknowns is an assertion.  The interpreter does everything
necessary to make the assertion hold in the knowledge base, including creating new objects.
{instance-of, dog, mammal};

causes the interpreter to locate objects matching instance-of, dog, and mammal, or to create
them if they do not already exist, and to create a new object establishing the relation between the
three.  It then returns a set containing the ID of the new relation.

The evaluate() function causes the contents of the objects in the argument set to be interpreted
as ISSL.
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Variable names must begin with $.

A pattern is an expression containing the special variables $_ and/or $0, $1, $2, and so on.  In
most contexts, a pattern acts as a query, and the special variables are considered unknowns.  If
the query is for a list of single objects matching some criteria, the pattern consists of an
expression in which $_ represents the unknown.  Thus
{instance-of, $_, mammal};

returns a list of all mammals.

Some queries will be more complex, however, and will return a list of ntuples rather than a list of
single objects.  In this case the variables $0, $1, $2, and so on represent multiple unknowns, and
specify their order in the resulting ntuples.  So
{lives-in, $1, ocean} # {instance-of, $1, mammal} # {feeds-on, $1, $2};

returns a list of pairs specifying the feeding habits of marine mammals.  Apparently there is
some relation among the elements of the tuple, but the interpreter has no way of knowing (yet)
what the relation is, since $0 was not used in the pattern.  Thus, it represents the results as
relations of type “unknown”, such as {unknown, whales, krill}, and returns a list of these
relations.  (It might be worthwhile to represent the pattern as an object in its own right before
evaluating it; then the pattern could act as the relation type for the results).

The foreach() operator evaluates its second argument once for each element of the first
argument.  The second argument is a pattern, but it acts as a template for substitutions rather than
as a query.  If the second argument contains $_, the ID of the current element is substituted.  If
the second argument contains $0, $1, $2, and so on, the nth edge from the current element is
substituted.  Thus it is possible to provide a list of ntuples as the first argument, and to make
some assertion about the elements of each ntuple in the second.

For example,
foreach(

{parent-of, $2, $1} # {brother-of, $3, $2},
{uncle-of, $3, $1}
);

causes the interpreter first to construct a list of ntuples matching the appropriate parent-of and
brother-of relations, such as {unknown, John, Dennis, Stan}, since the first argument
contains a pattern query.  Then, for each element in this list, the interpreter extracts edges 3 and 1
and establishes a new relation between the objects they point to.  Finally, it returns a list of the
newly created relations.  The interpreter is responsible for avoiding redundancy: it does not
create a new uncle-of relation where one already exists.

Note that this is not a search-time inference rule; it is a storage-time inference, which causes the
resulting relations to be explicitly established.  Search-time inference is not yet supported; when
it is, it will require inference rule objects containing a convenient representation of
{“implies”, pattern, pattern} .
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7.7.3 Examples

{instance-of, dog + cat, mammal + pet};

establishes four separate relations, one for each combination of elements from the argument lists.

$ShipSinkEvents =
{event-part-of, $1, World War II} # {sunk-in-event, $2, $1}
# {tonnage-of, $2, $3}
- {instance-of, $2, submarine} + {event-day, $1, Thursday};

foreach($ShipSinkEvents, {unknown, $2, $3});

returns a list of all ships sunk in WWII, along with their tonnages—except  submarines, unless
they were sunk on Thursdays.

$this = new;
{instance-of, $this, movie};
{title, $this, The Pleasure Garden};
{name, $this, The Pleasure Garden};
{year-released, $this, 1925};
{director, $this, Hitchcock};
{producer, $this, Balcon};
{studio, $this, Gainsborough and Emelka};
{distributor, $this, Wardour};
{cinematographer, $this, Ventimiglia};
{based-on-book, $this, Oliver Sandys};
{screenwriter, $this, Eliot Stannard};

Establishes a new, empty object to represent a movie and makes a number of assertions about it.

7.8 Importing Data

The best way of importing existing data is to translate it into a set of assertions in ISSL; the
resulting script can then be saved as an object and executed.  Assuming that the data is a
reasonably structured form to begin with, the translation is quite easy to do in Perl.  This method
was used to import existing data concerning movies, including information about directors,
studios, actors, academy awards, and so on, as in the example above.
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Conclusion

In this paper I have presented an abstract paradigm for storage, retrieval, and inference, and have
shown how it can be applied to general purpose computing.  The paradigm described is
significantly different from existing systems, in its internal structure, in the level of its
abstraction, and above all in its expressivity—that is, in the ability to represent and process any
encodable human thought in an intuitive way.

There are clearly great technical difficulties involved in making such a system work.  I have
demonstrated, with running code, that the basic structure for storage and retrieval is feasible, but
there are very many features which remain to be implemented.  Further, the current prototype
runs fairly slowly, and has been tested only for small data sets; so there is much work to be done
to increase the speed of the system and to insure its scalability over many orders of magnitude.

I am confident that, when it is more fully implemented, the way of thinking about computing
presented in this paper will prove to be very powerful.  The development of systems based on
these ideas will benefit users by providing intelligent and intuitive access to large knowledge
bases that are both widely distributed and arbitrarily broad in conceptual scope.
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