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Abstract

Computational Methods for Evaluating Microbial Diversity

by

David Alexander Wolfgang Soergel

Doctor of Philosophy in Biophysics

Designated Emphasis in Genomic and Computational Biology

University of California, Berkeley

Professor Steven Brenner, Chair

The design and evaluation of methods for describing the diversity of microbial life in envi-
ronmental samples is a critical step towards understanding life on earth and towards making
prudent interventions in a wide variety of microbe-driven systems.

Microbes in the environment, including bacteria, archaea, viruses, and single-celled eukaryotes,
are primary drivers of numerous geological and atmospheric processes, such as carbon fixation
and sequestration, nutrient cycling, soil formation, and even cloud formation. Cyanobacteria in
the surface of the ocean are estimated to be responsible for half of the primary production on
earth. Microbes living in and on the human body are intimately involved in health and disease,
even when they are not explicitly pathogenic; for instance, the gut is teeming with bacteria that
are essential for digestion, but anomalies in this microbial community may contribute to disor-
ders such as Crohn’s disease. Environmental bacteria are critically important to climate change,
agriculture, and public health, so understanding them has immediate practical importance, in
addition to satisfying our scientific curiosity.

Environmental microbiology has long been limited by the fact that over 99% of bacteria found
in the environment cannot yet be cultured, because the conditions required for growth have not
yet been determined. In many cases, bacteria live in interdependent communities of species,
making the growth conditions extremely complex and difficult to recreate, even if they could
be determined. Thus, it is not possible to perform experiments on these organisms in the lab,
or to acquire sufficient DNA to sequence their genomes in isolation. These limitations can be
sidestepped through the use of culture-independent surveying techniques. With the availability
of ever-cheaper DNA sequencing, methods that involve direct sequencing of DNA from envi-
ronmental samples have now gained prominence, and are producing a deluge of data. However,
the computational methods needed to make sense of these data are still in their infancy.

I evaluated methodological choices required for two kinds of culture-independent environmen-
tal sequencing techniques: taxonomic surveys using the 16S rRNA, and surveys of both tax-
onomy and function through shotgun sequencing. In both cases my goals were to increase the
effectiveness of future studies in extracting biologically relevant information from environmen-
tal sequence datasets, and especially to head off misinterpretations of such datasets due to errors
in methodology that have been overlooked to date.
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Microbial community composition using the 16S ribosomal RNA sequence

PCR amplification and sequencing of the gene for the 16S ribosomal RNA subunit directly
from environmental samples is a long-standing method of measuring species richness and rela-
tive abundance. I demonstrated that the use of sequencing reads that are much shorter than the
gene itself (as has recently become economical and thus popular) has the potential to introduce
substantial error in such studies. However, I also established, through exhaustive computational
experiments, that a judicous choice of PCR and sequencing primers can avoid these errors. In
particular, I found that the region following primer E517F provides the maximum available
taxonomic information in diverse environments, and that sequencing more than 100nt provides
little added value—a fact that justifies the use of next-generation sequencing technologies that
are limited to a short read length. Notably, I obtained the same result both regarding supervised
classification of sequences into known taxa and regarding unsupervised clustering of similar se-
quences into potentially unknown taxa. These are very different problems, so the congruence of
results confirms that the region following E517F is indeed more informative than other regions.

Microbial species identification from environmental shotgun sequencing

The second culture-independent sequencing approach I addressed, known as “metagenomics”
or “environmental genomics”, does not target any specific gene but rather samples DNA se-
quences from the entire pool in an environment through shotgun sequencing. These data allow
assessment of the range of metabolic functions present in a mixture of potentially many thou-
sands of microbial species. A foundational problem in metagenomics is the assignment of
sequences to known taxa, and the clustering of sequences into potentially unknown taxa. The
surprising finding that sequence composition (i.e., statistical descriptions of the distribution of
short words) can be discriminative of species identity has led to a wide range of proposed meth-
ods for both the supervised and the unsupervised variants of this “binning” problem, but the
validation procedures applied to them have been both inconsistent and unrealistic. It has thus
not been clear which method is best, or what performance can be expected in classifying real
data. I reimplemented nearly all of the methods in the literature as special cases of a more
general framework, allowing me to compare them on a common footing designed to mirror real
circumstances.

Infrastructure for large-scale reproducible computational research

Each of the above projects relies on large-scale simulations, which require careful coordination
of thousands of compute jobs and management of their inputs and outputs. This can be par-
ticularly daunting in the face of frequent updates to both input datasets and analysis programs,
requiring recomputation of dependent results. To manage these computations, I developed Ver-
dant (the “Versioned Data Analysis Tool”), a system for describing, sharing, and executing
computational workflows on a cluster that guarantees reproducibility of results. It provides
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a means of ensuring that a set of computational results are up-to-date with respect to the in-
puts and thus that they are internally consistent. It also provides a means of sharing inputs,
intermediate results, and final outputs in a manner that facilitates collaboration while avoiding
redundant computation.
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Chapter 1

Introduction

Microbes in the environment, including bacteria, archaea, viruses, and single-celled eukaryotes,
are primary drivers of numerous geological and atmospheric processes, such as carbon fixation
and sequestration (Bellamy et al. 2005; Monson et al. 2006), nutrient cycling (Arrigo 2005), soil
formation (Oades 1993), and even cloud formation (Christner et al. 2008). Cyanobacteria in the
surface of the ocean are estimated to be responsible for half of the primary production on earth
(Bibby et al. 2003; Giovannoni and Stingl 2005). Environmental bacteria are critically impor-
tant to climate change, agriculture, and public health; thus, understanding them has immediate
practical importance, in addition to satisfying our scientific curiosity.

Environmental microbiology has long been limited by the fact that over 99% of bacteria found
in the environment cannot yet be cultured, because the conditions required for growth have not
yet been determined (Staley and Konopka 1985; Amann et al. 1995; Rappé and Giovannoni
2003; Riesenfeld et al. 2004). In many cases, bacteria live in interdependent communities of
species (Bell et al. 2005; Tyson and Banfield 2005), making the growth conditions extremely
complex and difficult to recreate, even if they could be determined. Thus, it is not possible to
perform experiments on these organisms in the lab, or to acquire sufficient DNA to sequence
their genomes in isolation. Indeed, it was difficult until recently even to estimate the species
diversity and abundance distribution of these organisms.

1101 bacterial and 89 archaeal genomes have been fully sequenced to date by conventional
large-insert or shotgun sequencing, but all of these genomes are of culturable strains. Incredibly,
there are as many bacterial species in a single gram of soil (~3000-6000) as are listed in the
entire NCBI species taxonomy (Daniel 2005; Gans et al. 2005; Tringe et al. 2005). Thus, the
genetic diversity present in the environment is vastly undersampled, and the sample is biased as
well—both due to intentional selection of "interesting" bacteria (such as human pathogens) for
culturing and sequencing, and due to inherent biases in what can be cultured (Hugenholtz 2002).
Furthermore, it is difficult to define "species" in the context of bacteria; a given clade consists of
numerous strains that may be rapidly evolving and mixing genetic information through lateral
gene transfer (Acinas et al. 2004a; Gevers et al. 2005; Ge et al. 2005; Konstantinidis and Tiedje
2005, 2007; Wilmes et al. 2009; Denef et al. 2010a).
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For purposes of learning about microbes in the environment, the limitations of culturing can
be sidestepped through the use of culture-independent surveying techniques. Various classes
of such techniques have been proposed, including analyzing the diversity of phospholipids
(Dowhan 1997), restriction fragment length polymorphisms (RFLPs) (Moyer et al. 1994), de-
naturing gradient gel electrophoresis (DGGE) (Muyzer and Smalla 1998), and automated ribo-
somal intergenic spacer analysis (ARISA) (Fisher and Triplett 1999; Popa et al. 2009; Kovacs
et al. 2010). These methods study the diversity of biomarkers that are used as a proxy for species
identity.

With the availability of ever-cheaper DNA sequencing, methods that involve direct sequencing
of DNA from environmental samples have now gained prominence. The first such method is
PCR amplification and sequencing of the gene for the 16S ribosomal RNA subunit; the result-
ing distribution of sequences can can be used to estimate the number and identity of microbial
species present in an environmental sample with much greater precision and depth than the
aforementioned methods (Olsen et al. 1986; Nocker et al. 2007). The second approach, com-
monly termed “metagenomics”, is the study of DNA sequences uniformly sampled from an
environment by shotgun sequencing (Handelsman 2004; Riesenfeld et al. 2004; Allen and Ban-
field 2005; DeLong 2005; Tringe and Rubin 2005).

In this dissertation I evaluate methodological choices required for both kinds of culture-
independent environmental sequencing techniques, with the goals of increasing the effective-
ness of future studies in extracting biologically relevant information from environmental se-
quence datasets, and especially of heading off misinterpretations of such datasets due to errors
in methodology that have been overlooked to date.

1.1 Characterizing microbial community structure using the
16S ribosomal RNA sequence

The number and identity of microbial species present in an environmental sample can be esti-
mated by PCR amplification and sequencing of the 16S ribosomal RNA subunit gene (Olsen
et al. 1986; Britschgi and Giovannoni 1991; Curtis et al. 2002). This sequence is suitable for
the task of identifying taxa because it must be present in all microbial cells; it is thought to be
mostly vertically inherited (though this assumption has been called into question (Acinas et al.
2004b)); its function has not changed through evolution; and its overall mutation rate is fast
enough (particularly in the hypervariable regions) to distinguish species and even strains from
one another, but slow enough (particularly in the conserved regions) that sequence homology at
much greater evolutionary distances is not obscured (Vandamme et al. 1996).

Also, the method is sensitive to contamination (Tanner et al. 1998), as well as to biases due
to differing copy numbers of ribosomal RNA operons (Crosby and Criddle 2003; Acinas et al.
2004b). More profoundly, of course, the diversity of 16S ribosomal sequences present in a
sample tells us little about the nature and distribution of the other genes. Nonetheless, interest in
sequencing surveys of environmental microbes has exploded in recent years with the availability
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of sequencing technologies that produce ever-larger data sets at ever-decreasing cost. As a result
there has been an increasing need for evaluations of the methodological choices involved in
performing these studies and for computational methods for interpreting the resulting data.

The microbial species definition. The definition of microbial "species" remains controver-
sial. Methods of delineating species include DNA-DNA hybridization experiments; average
nucleotide identity, especially among conserved housekeeping genes; laboratory characteriza-
tion of metabolic functions; and division into "ecotypes" based on ecological niches. The cor-
respondence between 16S sequences and all of these methods (and hence, the correspondence
with traditional taxonomic names) is imperfect. Nonetheless, many studies adopt a functional
definition of an "operational taxonomic unit" (OTU) as a group of organisms sharing 97% se-
quence identity among their 16S genes, corresponding roughly to the species rank in traditional
taxonomies.

Measuring diversity of environmental microbes. Environmental diversity surveys may have
different goals, each of which may be best served by different collection, sequencing, and analy-
sis methods. Accordingly, there are three major distinctions that can be made among approaches
to interpreting 16S sequence data sets that are common in the literature. The first is whether an
environmental sample is analyzed with reference to a database of known sequences (a “super-
vised” method) or not (“unsupervised”). The second is whether the analysis is concerned only
with distinguishing different types of microbes, usually at the species or genus level (“OTU-
based” methods), or also with the phylogenetic relationships among these types (“tree-based”
methods). The third is whether the unit of interest is the individual taxon or the community as
a whole.

Common combinations include descriptions of microbial types present in a sample (supervised,
OTU-based, taxon-centric) (Sogin et al. 2006; Sundquist et al. 2007; Wang et al. 2007; Huse
et al. 2008; Liu et al. 2008; Wu et al. 2008; Hamp et al. 2009); species richness and evenness
estimates (unsupervised, OTU-based, community-centric) (Schloss and Handelsman 2005); and
the UniFrac beta diversity measure (unsupervised, tree-based, community-centric) (Lozupone
and Knight 2005), though various other combinations arise regularly as well.

Sequencing technologies and the importance of primer choice. Sequencing of environ-
mental 16S sequences requires that primers be chosen both for the PCR amplification step and
for the sequencing reaction. Because the purpose of such studies is to measure sequence di-
versity, it is not obvious a priori that primers can be found that will amplify sequences from
all microbial species. Fortunately the 16S sequence contains several highly conserved regions
to which primers can be targeted. Nonetheless, even the highest-coverage primers are biased
against some clades in which the targeted sequence contains slight variations (Baker and Cowan
2004).

In Chapters 2 and 3, I establish, based on exhaustive computational experiments, that environ-
mental microbial diversity surveys based on short reads within the 16S rRNA sequence ought
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to be done using primer E517F. Such surveys to date have been done with a wide variety of
primers, chosen for reasons that are often not reported (e.g., because certain primers empir-
ically amplify more DNA form certain samples than others). Systematic evaluations of the
impacts of this choice (Baker and Cowan 2004; Liu et al. 2007, 2008; Frank et al. 2008; Hamp
et al. 2009; Hong et al. 2009; Wang and Qian 2009) have not yet produced a community con-
sensus about which primers to use under which circumstances. In particular, different primers
provide sequences from different regions that evolve at different rates, and whose variation may
be more or less correlated with the variation in the sequence as a whole. Thus, sequences from
some primers are more informative about phylogenetic position than others. I found that reads
from E517F provide the maximum available taxonomic information in diverse environments,
and that sequencing more than 100nt provides little added value–a fact which justifies the use
of Illumina sequencing for this problem compared with technologies that provide longer reads.
Notably, I obtained the same result both regarding classification of sequences into known taxa
and regarding clustering similar sequences into potentially unknown taxa. These are very dif-
ferent problems, so the congruence of results suggests that the region following E517F really is
more informative than other regions.

1.2 Shotgun sequencing of microbial communities

The application of genome sequencing to microbial communities in recent years has produced
an ever-increasing flood of "metagenomic" data, consisting of millions of reads sequenced di-
rectly from numerous environments. The collection and analysis of such data (Figure 1) is
known as "metagenomics," because it concerns the study of genetic information pooled from
multiple species. The goal of such projects is generally to answer questions about microbial
ecology, including regarding the diversity of bacterial and archaeal (and less commonly, viral
and eukaryotic) "species" in a community, the functional complement of proteins encoded, the
evolutionary history of the represented populations (including both the "primary" phylogeny,
to the extent that is meaningful, together with the distribution of lateral gene transfer events),
and population genomics (i.e. regarding strain heterogeneity and recombination). However, for
most environments, the generation of new sequence data continues to rapidly outpace our abil-
ity to interpret it. I therefore tackled the problem of developing and validating computational
methods for analyzing metagenomic data.

In metagenomic sequencing projects, the species origin of each sequence read is unknown in
advance; indeed, even the number of species and their abundance distribution is usually un-
known. Thus, sequences from abundant species will appear more often than sequences from
rare species; sequences that appear redundantly within the genome of some species will appear
more often than those that do not; sequences conserved across taxa will appear more often than
those that do not; and these three effects are confounded with one another. Sequencing depth
is generally much less in metagenomic data sets than in isolate genome sequencing projects,
where 8x average coverage is considered sufficient for good assembly. Indeed, after generating
100 Mbp of sequence from Minnesota farm soil, Tringe et al. (2005) found almost no overlaps
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Figure 1.2: Contig length distributions from various metagenomic sequencing projects.

between reads, and estimated that 20-50 times more sequence would be required to assemble
the genome of even the single most abundant species, to say nothing of the several thousand
others. By contrast, Tyson et al. (2004) were able to assemble nearly complete genomes for
two species and large genomic fragments for three others from a sample of biofilm found in
acid mine drainage, a much less diverse environment, using about 75 Mbp of sequence. These
early sequencing projects were performed using Sanger sequencing, producing reads of approx-
imately 800 nucleotides each, sometimes from both ends of an insert. The recent and ongoing
explosion in next-generation sequencing technologies from Roche/454, Illumina, and others
is providing us with vastly greater quantities of sequence at a fraction of the cost of Sanger
sequencing, albeit at shorter read lengths, currently in the range of 75 to 400 nt.

It may be that sequencing will soon become so cheap that we can expect to assemble full
genomes from much more complex environments such as soil and seawater. However, assembly
of metagenomic data is further complicated by the presence of substantial strain heterogeneity,
recombination within a quasispecies, and lateral transfer of genetic material between species
(Acinas et al. 2004b; Ge et al. 2005; Gevers et al. 2005; Vignuzzi et al. 2005). Sequence data
from rare species will be sparse in any case.

The above concerns suggest that it will be useful to develop aggregate descriptions of metage-
nomic samples—that is, to learn how to characterize entire samples (and sets of samples) with
respect to their diversity, evolutionary stability, complement of biological functions, and so
forth, without first assembling single-species genomes from the shotgun sequence fragments.
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A general approach to these problems is to consider the frequency distributions of sequence
elements in the data. One kind of sequence element is the protein domain, the fundamental unit
of protein structure and evolution. Protein domains can be identified in new sequences using
probabilistic models, such as those in the Pfam collection (Bateman et al. 2004). Such models
are typically tens to hundreds of nucleotides long, but accommodate substantial variability and
thus match a range of related sequences. We took this approach in examining the distributions
of Pfam hits in data from the Sorcerer II Global Ocean Survey (GOS) in collaboration with
the J. Craig Venter Institute (Yooseph et al. 2007). Another kind of sequence element is the
oligonucleotide (also known as a k-mer), which is simply an exact sequence of k nucleotides.

Classification using sequence compositional biases. It is well known that GC content varies
across bacterial clades. Further, it has been shown that the frequency distribution of dinu-
cleotides in the genome of a single species constitutes a "genome signature" that is unique to
that species (at least, when making comparisons in an appropriate range of phylogenetic dis-
tances) (Karlin and Burge 1995; Karlin et al. 1998a). The dinucleotide signature is relatively
invariant across a given genome (Campbell et al. 1999); thus, the distribution of dinucleotides
in a 10-kb region is in many cases sufficient to identify the species of origin from a limited set
of options (Nakashima et al. 1998; Abe et al. 2003). This discrimination becomes more pre-
cise and can be accomplished with sequences as short as 400 bases when tetranucleotides and
perhaps larger oligonucleotides are used (Sandberg et al. 2001; Pride et al. 2003; Teeling et al.
2004b,a) (Figure 1.3). It may be that this startling combination of consistency within genomes
and divergence between genomes can be explained in terms of codon bias, amino acid usage
bias, biases in mutation and repair, and other known evolutionary phenomena, but this has not
yet been established. The frequency distribution of k-mers in a genome, or more broadly any
statistical description of its sequence composition, is known as the “genome signature”.

A basic question in any metagenomics project is "which species are present", or more generally,
how the reads can be classified into phylogenetic groups at various ranks. Genome signatures
can be exploited for this classification task despite our incomplete understanding of the un-
derlying biological causes. A wide variety of "binning" methods have been proposed on this
basis, but these have not been comprehensively compared to date. Indeed, since in general each
method has been evaluated under different conditions and according to different criteria, it has
not been meaningful to compare reported performance metrics such as sensitivity and speci-
ficity between papers in the literature. Thus it is a foundational problem in the field to establish
a consistent evaluation methodology and to apply it to the whole range of binning methods, so
as to make an informed decision about the "best" method to apply in a given context (perhaps
depending both on features of the community and on the biological questions being asked).

Comparative evaluation of binning methods. The design of an informative evaluation
methodology turns out to be surprisingly difficult for two reasons. First, there are very few
real data sets that are well enough understood to form the basis of a benchmark. Evaluations
are typically performed on simulated data for this reason, but it is not at all clear in turn how
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Figure 1.3: The genomes of different species contain distinctive distributions of 4-mers.
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to simulate data with realistic properties. Indeed, I describe in Chapter 4 that validation proce-
dures to date have made unrealistic assumptions about the composition of the communities that
we wish to analyze, and as a result have produced substantially inflated estimates of binning ac-
curacy. Correcting this overoptimism by designing a more realistic validation procedure is the
topic of Chapter 5. Second, it is not obvious which metric should be optimized. For instance,
measures commonly used to describe multiclass classifiers, such as class-normalized sensitivity
and specificity, assume that the class labels are meaningfully chosen, mutually exclusive, and
equally important. In the case of phylogenetic classification, the potential labels are hierarchi-
cally organized, and may have dramatically different weights associated with them (whether
based on abundance, diversity, or importance by some other measure). Thus, Chapter 5 also
proposes a measure for the quality of a phylogenetic classification.

There are very many parameters that can affect the accuracy of a binning process; these can be
divided into three classes. The first set of parameters concerns the characteristics of the sampled
community, over which we have no control, such as species richness, evenness, and phyloge-
netic distribution. The second set of parameters concerns the "wet" part of the sampling process,
including the choice of sequencing technology (and the associated characteristic distribution of
sequencing errors), any cloning or PCR biases, the read length, and the number of reads. These
parameters clearly must be chosen early on in a project, and cannot be changed once the exper-
iment has been done (or, can be "changed" only at great expense by starting over). The third set
of parameters are the purely computational ones, including the choice of statistical model for
compositional bias, the choice of a clustering method, the choice of a training set (in the case
of supervised clustering), and so forth. These are the easiest parameters to change, in that the
computations are typically fast enough that they can be repeated with different parameter sets
at minimal expense.

I wished to estimate the classification accuracy that can be expected when different binning
methods are applied to real environmental datasets. By varying all three classes of parameters—
those describing the community, the sequencing process, and the classification procedure—I
hope to choose the optimal binning method for a given community, i.e. to choose the third class
of parameters as a function of the first two classes (which we can likely measure but not alter).

In order to evaluate the great diversity of possible binning methods on common footing, I first
described them in terms of a general framework which includes nearly all of the published
methods as special cases. I then implemented this framework with a mix-and-match plugin
architecture, allowing me to test all of the published combinations of methodological choices, as
well as a wide variety of combinations that have not yet been tested, with the goal of determining
not only which set of parameters is best for given situation but also which of the parameters have
the greatest impact on the results. This work is ongoing.

In addition to helping to answer basic questions about evolutionary, ecological, and biogeo-
chemical processes, methods for analyzing environmental genomic data will be of increasing
practical importance in public health (Breitbart et al. 2003; Duncan 2003; Eckburg et al. 2005;
Vignuzzi et al. 2005), industry (Schloss and Handelsman 2003; Voget et al. 2003; Daniel 2005),
agriculture (Yang et al. 2000a; Gur and Zamir 2004; Foley et al. 2005), bioremediation (Lovley
2003; Peacock et al. 2004; Sánchez et al. 2004; Brakstad and Lødeng 2005), and conservation
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(Rauch and Bar-Yam 2004; Bell et al. 2005). The improvements I propose in the acquisition
and analysis of data in both 16S surveys and environmental shotgun sequencing projects will
increase the fidelity with which we can understand the composition and behavior of microbial
communities in many environments.
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Part I

Methods for environmental diversity
surveys using the 16S ribosomal sequence
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Chapter 2

Selection of primers for optimal taxonomic
classification of environmental 16S
sequences

2.1 Abstract

The composition of microbial communities has been studied for many years through sequencing
of the 16S rRNA gene amplified from environmental samples. Recently there has been an
explosion of interest in doing this using high-throughput short-read sequencing technologies.
A common goal of such studies is to classify each observed sequence to a standard taxonomy,
so as to enumerate the taxa present in the sample. There are dozens of “universal” primers that
can be used for amplification and sequencing; these primer sequences are highly conserved and
so are thought to amplify rRNA sequences from nearly all of the Bacterial species present, and
sometimes the Archaeal species as well. However, different primers target different regions
of the sequence, which may differ in the degree of taxonomic information they provide–for
instance, because different regions evolve at different rates.

I developed an evaluation procedure that provides a realistic measure of the taxonomic precision
that can be expected when classifying environmental sequence reads from a given primer. I then
systematically tested thousands of combinations of amplification and sequencing primers and
read lengths, simulating both single-ended and paired-end sequencing experiments. I thereby
determined which regions of the 16S gene are most informative with respect to taxonomic
classification. I found substantial variation in the information obtained from different primer
and length choices, and observed that the most informative choice may differ depending on
the environment being sequenced. Paired-end sequencing provides nearly no benefit in any
environment or for any read length. For single-ended sequencing, an optimal choice of primer
allows extraction of nearly all available taxonomic information using reads of only 75-90nt.
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2.2 Introduction and Background

Measuring diversity of environmental microbes. Variation in the sequence of the 16S ribo-
somal subunit has been used since the mid-1980s (Olsen et al. 1986) to investigate the diversity
of Bacteria and Archaea in many environments. Interest in sequencing surveys of environmen-
tal microbes has exploded in recent years with the availability of sequencing technologies that
produce ever-larger data sets at ever-decreasing cost. As a result there has been an increasing
need for evaluations of the methodological choices involved in performing these studies and for
computational methods for interpreting the resulting data.

Variations in methodology. For many years, surveys were performed using Sanger sequenc-
ing, producing reads covering about half of the 16S sequence (~700-800nt) in many studies,
and sometimes approaching the full length of the 16S sequence (~1500nt) if paired ends are
used. Such studies provide a small number of reads–usually hundreds of sequences per sample,
and at most few thousand. Next-generation sequencing technologies from 454, Illumina, and
others produce shorter reads, currently in the 75-400nt range, but in vastly larger numbers (e.g.,
millions of sequences per sample) (Dethlefsen et al. 2008; Caporaso et al. 2010)– a compelling
argument for diversity surveys (Tringe and Hugenholtz 2008). When performing an environ-
mental survey, a choice must therefore be made about which region within the 16S sequence
to target, and hence which amplification and sequencing primers to use, and whether to use
paired-end sequencing. There is not yet a consensus on this topic; hence there are several dozen
different primers that are commonly used in the literature (Baker et al. 2003; Wang and Qian
2009).

It is well known that the mutation rate varies widely within the 16S sequence (Van de Peer
et al. 1994, 1996a; Cilia et al. 1996; Baker et al. 2003), largely driven by the structure of the
RNA molecule, so that some regions are very highly conserved (allowing “universal” primer
sequences to reside there) while others are hypervariable, such that different strains within a
species have different sequences. The question arises, then, whether targeting different regions
of the sequence may lead to different biological conclusions (Mills et al. 2006; Liu et al. 2007,
2008; Hamp et al. 2009; Youssef et al. 2009), and indeed whether the currently available short
reads are sufficiently informative compared to near-full-length sequences.

One rather blatant example of this issue arises in many studies when sequences are clustered
into OTUs of 97% sequence identity, intended to indicate the species level. This rule of thumb
was established with respect to full-length 16S sequences, where it was found that the 97%
identity threshold corresponds roughly with 70% DNA-DNA hybridization, a long-standing
convention used to delineate species (Wayne et al. 1987; Vandamme et al. 1996; Hugenholtz
et al. 1998; Gevers et al. 2005; Goris et al. 2007). Clearly, if a hypervariable region is sequenced,
there will be far more 97% identical clusters than would have been found from full-length
sequencing; and if a conserved region is sequenced, there will be fewer. Other methodological
issues can have a similar impact, such as whether or not the Lane mask is applied to filter
out hypervariable regions (Lane 1991; Desantis et al. 2006b); which alignment method is used
(hypervariable regions naturally align poorly, so alignment variations essentially add noise to
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the resulting identity scores)(Sun et al. 2009); which definition of percent identity is used (a
question which is not at all as straightforward as it may seem); and whether the primer sequences
themselves (which are of course guaranteed to be 100% identical for non-degenerate primers)
are considered to be part of the read. There is nothing inherently wrong with using any arbitrary
clustering threshold for any particular region, but it must be recognized that different studies
may use wildly inconsistent standards to delineate OTUs, so the resulting species richness and
other diversity measures are generally not comparable (Schloss 2010).

Robustness of results to such variations. In any case, whether short reads are “sufficiently
informative” of course depends on the goal of each study. Liu et al. (2007) showed that 100-nt
reads can be nearly as informative about beta diversity (as measured by UniFrac) as full-length
sequences, provided that the primer is judiciously chosen; in particular, the authors recommend
the use of primer E357R.

However, I (Chapter 3) and others (Engelbrektson et al. 2010; Schloss 2010) have shown that
alpha diversity measures such as species richness and evenness can be quite sensitive to these
issues.

Here, I address the extent to which supervised classification of environmental sequences (i.e.
assignment of novel sequences to known taxa) can be reliable, given different choices of primers
and read length.

Methods of classifying sequences to known taxa. Approaches to assigning environmental
16S sequences to known taxa naturally consist of two phases: first, finding matching sequences
in a reference database, and second, using annotations on these reference sequences to infer the
taxonomic identity of the query sequence.

For the search step, the most obvious solution is to use BLAST or FASTA, but these are com-
putationally expensive due to the need to make alignments. An alternate method has been to
find reference sequences containing a similar distribution of k-mers, usually words of 7 or 8 nt,
which can be done much more rapidly (Chu et al. 2006; Sun et al. 2009). A recent hybrid solu-
tion is USEARCH, which makes alignments only of those sequences that are close according to
a k-mer measure (Edgar 2010). In any case, an important parameter is the similarity threshold
that is required: if our goal is to make genus-level annotations, then we ought to look for ref-
erence sequences within a percent identity to the query sequence (or equivalently, a proportion
of matching k-mers) that corresponds to the genus level. However, it is not at all clear what
that threshold should be, especially for fragmentary sequences. In practice, the choice of such
thresholds has been largely arbitrary. Often the set of hits is further limited by choosing some
number of the best ones (the “k-nearest-neighbor” or k-NN approach). Indeed, sometimes only
the single best hit is used. This approach is especially dangerous if the similarity threshold is
too permissive, since even the best hit may frequently be in a different taxon from the query
sequence at the level of interest.

If all of the hits agree on the taxonomic annotation at some level, then it is usually simply
transferred to the query sequence. When they disagree, as frequently happens even at higher
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taxonomic levels, a voting procedure may be used (e.g., choosing an annotation if some pro-
portion of the hits agree) (Sogin et al. 2006; Huse et al. 2007; Sundquist et al. 2007; Liu et al.
2008; Hamp et al. 2009). A more refined method of resolving such ambiguities is to consider the
placement of the query sequence on a phylogenetic tree. The tree may be a previously computed
one that relates all of the database sequences, as in the case of the ARB parsimony insertion tool
(Ludwig et al. 2004) (a method that has been widely used, but that is applicable only to small
numbers of sequences due to the substantal manual effort required). Some automated methods
construct a local tree from each set of database hits (Wu et al. 2008).

Inadequate validation of classification methods: confidence measures. Confidence in the
resulting taxonomy assignments should depend on confidence measures from each of the two
phases. That is: if all of the hits are very similar to the query sequence and they all agree, then
we will tend to have high confidence in the resulting classification; but lower confidence may
result either from greater distances between the query and the hits, or from disagreement among
the hits, or both. Published methods to date generally have not considered both sources of error,
if they mention confidence at all.

For instance, choosing the top BLAST hit may provide confidence in the search phase, but
only if the e-value threshold is stringent enough to strongly suggest that the hit is in fact in the
same genus as the query. This approach does not consider the potential for disagreement among
nearly-equivalent hits, which is all the more important when the search threshold is such that
the wrong taxa may be matched.

Conversely, the RDP bootstrap confidence (Wang et al. 2007) is only a measure of agreement
among annotations. It is applied to hits determined with a lax similarity threshold (because
only subsets of the query k-mers are used, so many mismatches may be tolerated). The logic
is essentially that, if our search threshold is permissive and the annotations agree anyway, then
we should have high confidence in the outcome. This approach is particularly susceptible to
database bias: the more permissive the search threshold, the more the set of hits will reflect
such database bias, and the higher the apparent agreement will be among hits in overrepresented
taxa. This confidence measure does not consider the likelihood that a hit with a certain k-mer
score from a bootstrap subset is in fact in the same genus as the query in the first place.

Inadequate validation of classification methods: environments and database coverage.
Because these methods are of the supervised variety, they are all subject to bias in the refer-
ence database. That is, all other things being equal, they are more likely to assign sequences to
taxa that are highly represented in the database than to taxa that have rarely been seen before.
Usually the reference database consists of a curated set drawn from all previously available 16S
sequences, as provided by Silva (Pruesse et al. 2007), RDP (Cole et al. 2005), or GreenGenes
(Desantis et al. 2006b). Thus the database favors taxa that have been most likely to be sequenced
in the past. As of this writing, about one quarter of the ~500,000 GreenGenes sequences come
from human skin; an additional quarter come from guts of humans and other mammals; about a
quarter are not annotated as to origin– so less than one quarter are known to come from most of
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the world’s environments, such as oceans and soils. The databases are also likely to be biased
in favor of taxa that can be cultivated. The finding in 2002 that only four divisions were well
represented among isolate genomes Hugenholtz (2002) is still largely true today; indeed, only
24 of the ~100 known bacterial divisions have even a single isolate genome representative.1

Efforts are being made to overcome this historical bias (GEBA, HMP), but the fact remains that
we do not know how to culture most species of microbes. The cultivation bias has surely had
an impact on the 16S databases as well, partly because the well-understood taxa are ultimately
used to choose primers from which environmental samples are sequenced. At the very least, it is
clear that model organisms are highly represented. In sum, while 500,000 sequences may seem
like a large number, it seems likely that there are vastly more taxa that have not yet been ob-
served. Indeed, novel bacterial and archaeal divisions are still being discovered at an alarming
rate, often several in one sample (Chouari et al. 2005; Elshahed et al. 2008).

Especially in light of this potential for bias and the relatively sparse sampling of environments
to date, it is important to thoroughly validate the predictions made by taxonomic classifiers. In
particular, I am concerned that it is easy to “overreach”, that is, to make a prediction that is
more precise than is warranted. In the simplest case, some studies simply transfer the species
annotation from the nearest BLAST hit for each query sequence, even if that hit differs by more
than 3% from the query. Given the conventional correspondence of 97% sequence identity
with the species level, the resulting species prediction is clearly wrong in this case (though
the broader genus-level prediction may still be correct). Similarly, the GreenGenes and RDP
web classifiers will commonly report a genus assignment for a sequence that is more than 5%
different from any sequence in the database, even though it is obviously not a member of any
known genus.

Inadequate validation of classification methods: consistency is not accuracy. A common
validation procedure that can be quite misleading is to use unannotated sequences as the test
queries, and to measure consistency between taxonomic assignments made from simulated short
reads and taxonomic assignments made from full-length sequences from which the fragments
were extracted(Huse et al. 2008; Liu et al. 2008). Agreement between these two predictions
says nothing about whether the assignment is correct at all, especially not when a low sequence
identity threshold is used in the database search (e.g. 75% in the case of (Liu et al. 2008)).
Consider the case of a full-length sequence that is more than 5% different from any reference
sequence. Even if an extracted fragment matches exactly the same set of database hits that the
full-length sequence does, and even if those database hits agree on genus, the resulting genus
prediction is clearly an artifact of database bias, not a legitimate assignment.

Inadequate validation of classification methods: the leave-one-out mistake. Authors of
taxonomic classifiers have reported impressive estimates of precision and accuracy from their
validations (Wang et al. 2007; Sundquist et al. 2007; Wu et al. 2008). However, these valida-
tions uniformly make a fatal mistake which inflates these results, which is that they are based

1http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.html, http://greengenes.lbl.gov/cgi-
bin/nph-browse.cgi
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on “leave-one-out” experiments done at the sequence level. That is, they test prediction accu-
racy by extracting one sequence at a time from the reference database; classifying it using the
remainder of the database; and comparing the predicted taxon with the “true” annotation on
the query sequence. The mistake is that query sequences chosen randomly from the database
reflect exactly the same biases that were present in the database to begin with, and so they are
on average easier to classify than environmental sequences.

The reference databases are created by aggregating sequences from published studies, which in
turn each typically report sequences from one sample or a few samples. Thus the database con-
tains a few thousand sequences each from some samples, but more frequently a few hundred per
sample, and very few sequences that were obtained independently from the others. Sequences
within a given sample are more likely to have a close match within the same sample than to
sequences from other samples (Acinas et al. 2004a); and obviously the same is true of environ-
ment types such as human gut. Thus, it is on average much easier to classify a sequence chosen
from the database–which, despite the leave-one-out procedure, retains its sisters from the same
sample and similar samples from the same environment–than it is to classify a sequence from a
new sample (and especially a new environment) that is not yet in the database.

This issue comes into stark relief when one considers that natural environments contain many
genuses, and even higher groups up to divisions, that are not yet represented in reference
databases. The leave-one-out validations provide at best a measure of accuracy conditional
on the knowledge that the query sequence comes from a known taxon. But environmental se-
quences do not meet that condition, and so the reported accuracy measure does not apply. In
the case of the validation of the RDP classifier, the authors even imposed this condition inten-
tionally:when a query sequence was the only representative of a genus in the database, such that
leaving it out left no representatives, that data point was not counted in the accuracy measure
(Wang et al. 2007).

Validations may be performed somewhat more fairly by leaving out an entire study at a time.
In some cases, such as samples from human gut, there are enough sequences from the same
environment left in the database that most of the sequences from the the held-out sample can
be classified accurately. But in other cases, the held-out study is the only one of its kind, and
consequently its sequences cannot be classified nearly as well.

I evaluated this issue using near-full-length sequences from eight large studies from diverse en-
vironments that are incorporated into the current GreenGenes. Figure 2.1shows the cumulative
distribution of percent identity scores between query sequences from various studies and their
closest match in the remainder of GreenGenes (holding out each study in turn). Nearly all se-
quences from the human gut sample are from species that have at least one representative in the
rest of GreenGenes (i.e., they have a hit that is at least 97% identical over the full length), so we
can expect human gut samples to be easy to classify. In the hypersaline mat sample, by contrast,
fully 40% of the sequences have no match even at 95% identity, indicating that they represent
novel genuses. Obviously, then, the RDP classifier’s reported 88% accuracy at the genus level
is not realistic in all cases. Even the ocean sample contains 10% novel genuses with respect
to the remainder. Thus we should expect our ability to classify sequences to vary dramatically
depending on the environment from which the sample is taken, and the degree to which that
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Figure 2.1: Coverage of different environments by GreenGenes. The plot shows the distribution
of percent identity scores between environmental sequences and their closest matches in the re-
mainder of GreenGenes (with each respective sample held out). The distributions are presented
cumulatively from right to left, so that the Y value indicates the proportion of each sample that
is within a given distance of any reference sequence. We see that GreenGenes provides excel-
lent coverage of human gut and skin samples, but relatively poor coverage of the grassland soil
and hypersaline mat samples.

environment has been previously characterized.

Open questions. In light of the above issues, I wished to reassess the precision and accuracy
of taxonomic classification that can be expected, with respect to the environment being se-
quenced, the choice of primers, and the read length. In particular, I sought to determine which
region within the 16S rRNA should be sequenced, given the read-length limitations of current
technologies, so as to maximize the taxonomic information obtained. I also asked whether dif-
ferent environments call for different primers. Finally I asked whether paired-end sequencing
can significantly improve taxonomic assignments compared to single reads.
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2.3 Results

I performed a simulation study starting with environmental data sets of full length or near full
length 16S sequences. I extracted reads of varying lengths at 44 universal primer locations
commonly found in the literature, as well as pairs of these (simulating paired-end sequencing
experiments). I searched for the nearest matches to each read in the GreenGenes database, in
which many sequences have curated RDP taxonomic annotations. By looking for agreement
among these annotations at each taxonomic rank, I then found a consensus taxonomic position
for the query read.

The rank to which a prediction could be made varied from one read to the next, depending on
the proximity of the query sequence to database sequences, on the ranks to which the database
annotations described the hits at all (which is variable in GreenGenes), and on the depth to
which those annotations agreed with one another. The classification procedure is similar to
the GAST process (Sogin et al. 2006; Huse et al. 2008) and others (Sundquist et al. 2007; Liu
et al. 2008; Hamp et al. 2009) (see Materials & Methods 2.5.6). Prior authors have reported the
extent to which a classification can be made at all (i.e., precision), without regard for whether
that classification is actually correct (accuracy). I applied a confidence filter (Section 2.5.8) so
that I make classifications only to the level of the tree at which we can have a given level of
confidence in the prediction (here, 80% or 95%) .

After classifying an entire environmental sample using a particular primer and length, I obtained
the proportion of that sample that could be confidently classified to each taxonomic rank from
domain through strain, as well as the proportions that could not be classified, either because
the primer did not hit the query sequence at all, because the extracted read produced no close
matches in the database, or because the database hits were insufficiently annotated.

The goal, then, was to choose a primer and read length for each environment that allowed
the largest proportion of the sequences to be confidently classified to each level of the tree.
To accomplish this, I simply computed these proportions for thousands of combinations of
environments, primers, and read lengths by brute force.

I examined both single-ended and paired-end sequencing. PCR amplification is typically re-
quired prior to sequencing; thus, even in the single-ended case, a second primer is needed in
the amplification step. This primer may limit the proportion of the original sample that can be
sequenced and later classified, because sequences that do not contain it will not be amplified.
I therefore tested each of the 44 sequencing primers in the context of all viable amplification
partners, for a total of 794 combinations. In the paired-end case, I tested all 374 viable pairings
of the 22 forward and 22 reverse primers.

2.3.1 The confidence filter avoids spurious predictions

I found that the classification procedure initially made many predictions which were later re-
jected by the confidence filter. For example, Figure 2.2 shows the proportions of classifications
of ocean sequences made to each rank, using 44 primers and read lengths of 50, 75, 100, 125,
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and 400nt. For single-ended sequencing, there are ~3500 viable combinations of PCR primer,
sequencing primer, and length; for paired-end sequencing, there are ~1600 viable combinations
of primer pair and length. All ~5100 single-ended and paired-end combinations are included
in each plot, sorted along the X axis according to a rough measure of overall classification per-
formance, so that the best combinations of primers and read length are to the left. The panels
compare results using no confidence filter, an 80% confidence filter, and a 95% confidence filter.

The unfiltered classification provided strain- and species-level predictions for a few percent of
the sample, and genus-level predictions for ~10-15% of the sample for many primer choices. At
the 80% confidence level, all of the original strain- and species-level predictions, and many of
the genus-level predictions, were deemed unreliable, though with a judicious choice of primers
it is still possible to nearly match the unfiltered genus classification rates. When requiring 95%
confidence, sequences could be confidently classified to the class level at best, regardless of
primer and length choice. The overall proportion classified to the domain, phylum, and class
levels does not change appreciably with these confidence thresholds (though those proportions
do of course decrease at even higher confidence thresholds such as 99%; data not shown).

These results suggest that similar classification procedures that do not consider confidence will
frequently overreach, making predictions at a lower taxonomic rank than is warranted.

2.3.2 Classification rate and precision vary widely among environments
and primer/read length choices

The top two panels of figure 2.3 show the proportions of a human gut sample that could be
classified to each taxonomic rank with 80% confidence and 95% confidence, respectively. The
remaining panels (continuing in figure 2.4) follow similarly for samples from different environ-
ments.

Two conclusions can be drawn from these plots. First, within each environment, different
primers and read lengths produce dramatically different classification performance; thus it is
indeed important to choose a reasonably good one. Second, different environments can be clas-
sified to dramatically different levels. This is largely an effect of bias in the reference database,
which remains dominated by only four bacterial divisions (Hugenholtz 2002). As suggested
previously, samples that contain primarily sequences that are similar to known sequences are
easier to classify than samples containing mostly novel sequences (Figure 2.1), a prediction that
is borne out in these results (for instance, better classifications are obtained for sequences from
human gut than from other environments).

2.3.3 75nt reads from selected primers achieve near optimal classification
performance

The proportions of each sample that can be classified to the genus level with 80% confidence us-
ing each of the ~3500 single-ended primer/length combinations are available in the supplemen-
tary material (as are tables for other ranks and confidence levels). Table 2.1 presents selected
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Figure 2.2: Impact of the confidence filter on classifications of an ocean sample. ~5100 possible
choices of primers and read lengths are sorted on the X axis according to a rough measure of
overall classification performance. The bar above each choice shows the proportion of the
sample that can be classified to each taxonomic level. These proportions are stacked, so that
the top of each colored section indicates how much of the sample can be classified to the given
level or better. For instance, the red bars show that, for the best primers, ~5-10% of the sample
can be classified only to the domain level, but that > 95% of the sample can be classified at least
to the domain level.
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Figure 2.3: Classification performance of ~5100 possible choices of primers and read lengths
for different environments, represented as in Figure 2.2.
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Figure 2.4: Classification performance of ~5100 possible choices of primers and read lengths
for different environments, represented as in Figure 2.2.
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combinations that are optimal for at least one environment per read length (see Materials &
Methods 2.5.9). Table 2.2 presents optimal primers, similarly filtered, for making phylum-level
predictions with 95% confidence.

From these tables I conclude that no one combination of primer and read length is best for all
environments; for optimal performance, a different choice should be made depending on the
environment being sequenced. I presume that this conclusion extends to other environments
that I did not test. However, some primers perform well across a range of environments; for
instance, E517F provides near-optimal performance in four or five out of the eight environments
(depending on read length), both for genus-level and phylum-level classifications.

In most environments, sequencing 75nt from the best primer provides confident genus-level
classifications within 5% of the maximum achievable from longer read lengths. For phylum-
level predictions, the best classification rate in each environment is achieved with 50nt reads. I
investigate the question of read length in more detail for two specific primers in section 2.3.6.

2.3.4 Impact of the amplification primer

The near full-length data sets from which I simulated short reads were originally produced
using Sanger sequencing, typically using the highly conserved end primers E8F and E1406R,
E1506R, or U1541R. Thus I was unable to take into account any organisms in the original
samples whose 16S sequences did not contain these primers. I therefore initially assumed that
using one of these primers as the PCR partner for each sequencing primer would produce the
best available performance; using any other PCR primer can only limit the sequence pool further
and thus reduce the classification rate. In most cases, this expectation was confirmed; that is
why nearly every entry in the “amplification primer” column in tables 2.1 and 2.2 contains the
word “end”, indicating that an end primer is an optimal pairing for the respective sequencing
primers.

However, in a few situations, using a more limiting PCR primer perversely improved classifi-
cation performance. This can happen when the PCR primer preferentially excludes sequences
that would have been misclassified anyway. This effect can cause the primer pair to pass the
confidence filter, when the same sequencing primer paired with a more permissive PCR primer
would have failed. Consider, for instance, classification of the grassland soil sample using

Table 2.1 (next page): Genus classification rates at 80% confidence for optimal choices of
primers for amplification and single-ended sequencing. Thousands of combinations that pro-
duce suboptimal results are not shown (see Materials & Methods 2.5.9). Primers appearing
together perform equivalently; i.e., for a given row, any choice among the given sequencing
and amplification primers will produce the same result. “End” indicates an end primer such as
E8F, E1406R, U1406R, E1407R, or E1506R. The highlighted cells indicate classification rates
within 10% of the best achievable for each environment and read length.
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percentage of sample classified to genus level with >= 80% confidence
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E1391F end 32 70 0 36 42 0 0 0

U529R E533R end 46 56 16 0 51 0 0 0

E969Fi end 51 26 21 0 44 12 0 0

E786F Eb787F end E926Ra 52 15 17 40 30 0 0 0

50 E1492R end 47 75 20 0 0 0 0 0

E1492R E969Fi 47 72 20 0 0 3 0 0

E1064Ri end E341F E517F U515F 45 25 20 0 49 0 0 0

U515F E517F end 37 0 0 42 34 0 0 0

E1065R end E517F U515F 2 0 10 35 43 11 0 0

E1238R end U515F E517F 0 8 0 35 11 0 0 16

E517F end E926Ra 58 60 19 41 51 0 0 0

E1391F end 60 58 23 42 0 0 0 0

E786F Eb787F E805F end E926Ra 54 20 21 41 35 11 0 0

U519F end E926Ra 40 60 25 0 48 0 0 0

75 E826R end E341F E517F U515F 54 16 20 43 34 0 0 0

E534R end 39 53 25 0 50 0 0 0

U515F E1114R 24 56 17 0 43 3 0 0

E926Ra end E341F E517F U515F 28 0 19 42 43 8 0 0

U529R E533R end 58 55 25 0 0 0 0 0

E1238R E341F U341F E338F E1099F 1 13 0 37 26 0 0 19

U515F / E517F end / end E926Ra 61 61 26 42 0 0 0 0

U519F end 42 58 26 0 49 0 0 0

E517F E939R 55 17 18 41 37 7 0 0

E926Ra end E341F 56 23 23 0 53 13 0 0

E1391F end 60 65 0 40 0 0 0 0

100 E517F E1114R 29 58 24 41 0 13 0 0

E1391F E1492R 60 64 23 0 0 0 0 0

E917F end E1407R 46 28 24 0 42 0 0 0

E517F E1065R 0 0 10 38 45 11 0 0

E1238R E786F E805F 4 15 16 31 20 0 17 0

E338F E1238R 2 39 6 0 32 0 0 21

U515F end 59 59 27 0 54 14 0 0

125 E1407R U1406R E1406R end 58 72 24 0 49 0 0 0

U515F E517F end 60 61 27 0 0 14 0 0

400 E1492R end 65 58 20 0 0 0 0 0

U515F E517F / E926Ra end E926Ra / end E341F 60 23 30 0 0 0 0 0

Table 2.1: Genus classification rates at 80% confidence for optimal choices of primers for am-
plification and single-ended sequencing. (Caption previous page)
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percentage of sample classified to phylum level with >= 95% confidence

read

length sequencing primer amplification primer H
um

an
G

ut

D
us

t&
Sk

in

St
ee

r
R

um
en

Te
rm

ite
G

ut

G
ra

ss
la

nd
So

il

O
ce

an

C
or

al

H
yp

er
sa

lin
e

M
at

E533Ra end 89 70 95 0 87 87 71 0

E805F end 94 69 92 47 64 51 69 0

U515F E517F E1064Ri 96 66 96 45 0 88 78 0

Eb787F end 95 70 94 0 64 50 67 0

U515F E517F end 98 70 97 0 0 90 84 0

U515F E517F E826R 93 66 91 0 61 50 71 0

50 E1391F end 99 86 94 0 0 89 63 0

E926Ra end 95 95 0 46 0 83 70 0

E341F E343F E926Rb U926R 92 73 81 45 0 0 50 0

E338F E341F U341F E343F E926Ra 92 74 91 46 0 0 0 0

E1492R end 97 94 76 0 0 0 0 0

E338F E341F U341F E1238R 29 56 57 39 0 43 0 30

E926Ra E517F U515F 86 68 94 47 84 85 71 0

E517F E1064Ri 96 65 95 45 78 87 56 0

U515F end 97 69 97 0 86 89 65 0

E926Ra end 87 71 95 0 86 88 73 0

75 E341F end 92 64 94 0 85 86 75 0

E355R end 98 70 96 0 72 72 70 0

E917F end 98 71 94 0 51 84 65 0

E1406R end 97 89 94 0 0 91 69 0

E1238R E343F E341F U341F 34 57 59 40 46 59 51 30

E338F E1238R 34 50 60 0 46 58 57 30

U515F E517F end 98 67 93 46 0 82 0 0

100 E1406R Eb787F E786F 93 82 91 0 60 0 56 0

E1406R U1406R E1407R E969Fi 98 83 94 40 0 0 0 0

125 no improvement

400 no improvement

Table 2.2: Phylum classification rates at 95% confidence for optimal choices of primers for
amplification and single-ended sequencing. Results were filtered and represented as in table
2.1.
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100nt reads from E517F. When amplified using an end primer or E926Ra, genus level predic-
tions from these reads fail the 80% confidence test, so no predictions are made; but when paired
with E939R, the predictions are deemed confident and 37% of the sample is classified. Another
way to put this is that some primers are less universal, and conversely are more specific for taxa
that we are able to identify. In such cases, a more universal primer only includes more novel
taxa, thereby eroding our confidence that we can classify anything. This is probably also why
the hypersaline mat sample yields no confident genus-level or even phylum-level predictions
unless primer E1238R is involved.

2.3.5 Paired-end sequencing offers nearly no benefit over single-ended se-
quencing

For paired-end sequencing, predictions were made by a consensus of assignments to the two
reads; however, when one read provided a more detailed classification than the other, it was
accepted (Materials & Methods 2.5.7). I hoped thereby to obtain assignments that were more
precise and accurate than were possible from one read alone. Tables 2.3 and 2.4 compare
the maximum classification rates that can be achieved when optimal primers are chosen for
single-ended or paired-end sequencing, when the goals are 80%-confident genus predictions
and 95% confident phylum predictions, respectively. These demonstrate that the paired-end
approach does not appreciably increase our ability to classify sequences. In each environment,
the observed improvement in classification performance is a few percent at best, and likely does
not justify the additional complexity and expense in most cases.

2.3.6 What read length is sufficient?

Longer reads are generally more difficult to obtain, more expensive, and less accurate (Schuster
2008); thus we would like to sequence the shortest reads that provide near-optimal classification
performance. Because I concluded above that single-ended reads are sufficient, I explored the
dependence of classification performance on read length in more detail for two of the best
primers, E533R and E517F.

Figure 2.5 shows the dependence of 80%-confident classification performance on read length
in the various environments. I found that genus classification performance using E517F on the
human gut sample reaches a plateau at 80nt, and does not improve further even with 400nt reads.
Using E533R, a plateau is reached at about 90nt, and scarcely improves again until 135nt. A
similar plateau was reached for both primers in all environments, at read lengths varying from
55nt to 90nt. Only the Steer Rumen sample shows gains in genus classification past 90nt, and
these are so modest and gradual that for most applications the cost of longer reads would not
be justified. Classification rates at other taxonomic levels similarly approached their maximum
values at read lengths of ~90nt, for both primers and in every environment. Finally, similar
plateaus were reached in the vicinity of 90nt, though of course at a lower classification rate, for
95% confident predictions (data not shown).
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maximum percentage of sample classifiable to genus

level with >= 80% confidence
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50 52 75 20 42 51 12 0 16

75 60 25 43 19

single-ended 100 61 26 13 17 21

125 27 54 14

400 65 30

50 56 78 22 41 49 13 0 20

75 63 28 45 58 11

paired-end 100 29 60 14

125 15 14

400 66 31

Table 2.3: Paired-end sequencing offers little improvement in classification rate over single-
ended sequencing for 80% confident genus classification. The classification rate shown in each
cell is the maximum value observed for any choice of primers at each respective read length.
Empty cells indicate no improvement over shorter reads.

maximum percentage of sample classifiable to phylum

level with >= 95% confidence
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50 99 95 97 47 87 90 84 30

75 no improvement

single-ended 100 no improvement

125 no improvement

400 no improvement

50 99 94 96 46 87 90 84 31

75 89 91 33

paired-end 100 no improvement

125 no improvement

400 no improvement

Table 2.4: Paired-end sequencing offers little improvement in classification rate over single-
ended sequencing for 95% confident phylum classification. The classification rate shown in
each cell is the maximum value observed for any choice of primers at each respective read
length. Empty cells indicate no improvement over shorter reads.
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Figure 2.5: Classification performance resulting from different read lengths, starting from
primers E517F and E533R, for various environments. Data are represented as in Figure 2.2.
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Figure 2.6: Classification performance resulting from different read lengths, starting from
primers E517F and E533R, for various environments. Data are represented as in Figure 2.2.



31

In sum, I conclude that sequencing more than 90nt (including the primer) provides no benefit
for taxonomic classification when using either E517F or E533R. Of course, I cannot conclude
from this section alone that the same conclusion holds for other primers, because they target
different regions of the sequence. However, we saw in section 2.3.3 (albeit in less detail) that
reads longer than 75nt rarely offer large gains in classification for most of the optimal primers.

2.4 Discussion

Taxonomic classifications are less reliable than previously believed. I have shown that tax-
onomic classifications of short reads should be treated with substantial skepticism, especially
when these classifications are made to the genus level. Claims of precise and accurate taxo-
nomic assignments have been overstated to date, largely due to unrealistic assumptions made
in the validation of classification procedures. Using a validation procedure designed to esti-
mate real-world classification performance, I found that, in many environments, and for many
choices of primer and read length, no genus-level predictions can be made with 80% confidence.
Indeed, for some environments, the proportion that can be confidently classified to the genus
level remains low even for the optimal primer choice.

Classifiers that do not adequately consider various sources of uncertainty in their predictions
will commonly make genus-level assignments that are not supportable. This can occur due to
poor database coverage of the environment in question, in which case the true genus of a query
sequence is frequently not present in the reference database at all. It can also occur when the
sequence region in question does not provide adequate taxonomic resolution to unambiguously
identify the correct genus, even if it is present. In this circumstance, predictions are especially
susceptible to database bias, resulting in classifications made preferentially to taxa that are
abundant in the database.

Unfortunately, the widely used RDP and GreenGenes classifiers suffer from these difficulties–
not only when applied to short reads, but potentially for near-full-length sequences as well.
Consequently, I am concerned that the results of many hundreds of studies that employed these
classifiers may be unreliable (depending, of course, on how the classification results were inter-
preted in each case).

The validation procedure I developed holds out an entire study at a time, simulating the situation
that each study was not yet incorporated in the reference database and needed to be classified.
Of course, now that the studies I evaluated are in GreenGenes, future samples of similar com-
position will be easier to classify than I report. This is especially relevant for studies that are
the only representative in GreenGenes of a given environment type, such as the hypersaline mat
sample. I would expect a second hypersaline mat sample to classify a good deal better than
reported here, because matches can now be made to sequences from the first sample (assuming,
of course, that those sequences now carry manually curated taxonomic annotations, including
taxa that were not previously present in the database, and assuming that the second sample bears
any resemblance to the first). But, many other environments remain as poorly represented now
as hypersaline mat was previously. Thus my results are particularly sobering with respect to
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whatever environment types are underrepresented in the database at the moment that it is used
as a basis for classification.

The question of how samples become annotated upon incorporation into the reference database
bears on an observation I made previously: that comparing fragment predictions to full-length
predictions provides only a measure of consistency, not of accuracy. While some taxonomic
annotations in reference databases are subject to careful manual curation, others may not have
been so thoroughly treated. In cases where the annotations were largely the result of an auto-
mated classification procedure, they may not provide the robust ground truth that I assumed in
performing my evaluations. In that case, my approach in fact also produces a measure of con-
sistency between predictions from fragments and predictions from full-length sequence (with
which database sequences were annotated), rather than a true accuracy. This potential for com-
pounding errors would mean that my results are overly optimistic, so this concern should in-
crease our skepticism about the accuracy of taxonomic classifiers still further.

Generalizability of results: environments. The environments I tested are diverse but by no
means comprehensive. Thus I can hope, but cannot guarantee, that those primers that appear
particularly informative in multiple environments here, such as E517F, E533R, E1391F, and
others, would be effective in other samples as well. A related caveat is that the confidence
filter I applied to the classifications from each sample was based on curated annotations on that
sample itself; thus it is not possible to evaluate the confidence levels anew for a fresh sample.
This is, of course, unavoidably how all validations of this type must work: we can predict the
performance expected from a novel dataset only on the basis of that seen in prior datasets where
the desired result is known. To the extent that the new dataset resembles the ones on which
validations were performed (in my case, with respect to both the degree of database coverage as
shown in figure 2.1 and the actual taxonomic composition), I assume that the conclusions from
the validation process hold true for the actual experiment as well (i.e., regarding the confidence
levels provided by different primers).

Generalizability of results: experimental design. The goal of this study was to identify the
experimental parameters that allow the largest proportion of sequences from an environment to
be confidently classified. Consequently, I have likely chosen primers that are present in taxa
that are abundant in the tested environments. If the goal had been to find primers that identify
the largest number of distinct genuses, including rare ones, the result may have been different.

Also, in the selection of optimal results to present in tables 2.1 and 2.2, I assumed that any
pairing of primers and read lengths was equally viable. However, some sequencing technologies
may impose constraints that I did not take into account, for instance preferring primer pairs
separated by a given distance, or preferring longer primers to shorter ones. The complete tables
available in the supplement can be searched for primer pair and read length choices that meet
such criteria but that did not appear in my summary tables.

More generally, these results do not reveal which sequence region is most informative with
respect to unsupervised clustering of a sample– a common goal of microbial diversity studies
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that is quite different from the goal of taxonomic classification. I will address that question in
Chapter 3.

Hypervariable regions need not be specifically targeted. No obvious pattern emerged from
my analysis regarding whether hypervariable regions are particularly informative. This issue is
hard to evaluate, however, because reads of 75nt or longer from any primer nearly inevitably
include some hypervariable sequence. The reads found to be optimal in tables 2.1 and 2.2
frequently include small portions of V3, V4, or V9, but it is not clear how to determine whether
this is significant.

Sequencing from E517F produces a read mostly between V3 and V4, but that does enter V4
at position 589, i.e., at position 72 of the read. In most environments there is no significant
increase in classification as more of V4 is included (i.e., at read lengths of 75 and higher),
though the human gut sample doesn’t plateau until 85nt (including 13nt of V4). Overall this
suggests that sequencing a hypervariable region is not essential for making near-optimal genus-
level distinctions, as with 75nt reads from E517F.

For communities that are poorly represented in GreenGenes, increased read length actually
decreased classification performance, because as the reads extend into more rapidly evolving
regions, they accumulate ever more differences from their best matching reference sequence.
For instance, in the case of grassland soil, genus classifications that can be made for reads up to
80 nt from E517F can no longer be made confidently for reads of 85 nt and higher. This may
seem counterintuitive, but it does make sense due to my classification procedure and confidence
filter. The increase in sequence variability beyond 72 nt means that, as the sequence length
increases, the best database hits have an ever lower percent identity with the query sequence.
Thus, database hits that differed from the query in the first 72 nt can be taken into account when
they were not before. But these are more likely to have divergent genus annotations, resulting in
the conclusion that we cannot make confident genus predictions. In the case of grassland soil,
at least, I conclude that the region between V3 and V4 is more informative regarding genus
identity than V4 itself.

Short single-ended reads provide near optimal classification. I found that, if appropriate
primers are chosen, there is rarely a reason to sequence a single read longer than 90nt, and there
is no benefit to paired-end sequencing. Indeed, assuming that the cost per base is roughly linear,
one is often better off sequencing a single longer read than two shorter ones; for instance, table
2.3 shows that a single read of 100nt matches or slightly outperforms a pair of 50nt reads in
seven of the eight environments tested.

I hope that these observations will allow future microbial diversity studies to be performed in
the most informative and cost-effective way.
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2.5 Materials & Methods

2.5.1 Choice of query datasets

I wished to test all primer and read length combinations using consistent sets of underlying
sequences. I therefore sought data sets containing many near-full-length sequences from the
same environment. I defined "near-full-length" as including hypervariable regions V1 through
V9 (specifically, extending from positions 69 to 1465 in E. coli coordinates). I wished the
datasets to be as large as possible in order to limit stochastic variation in the proportions of
sampled taxa, and so that rare species would be represented.

I downloaded the GreenGenes database (version of August 25, 2010) and identified eight ap-
propriate studies contained within it, representing a variety of environments, shown in table
2.5.
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Original citation
Human Gut 30418 7255 7234 (Li et al. 2008a)
Mattress Dust and Human Skin 36985 3294 3285 (Täubel et al. 2009)
Steer Rumen 35250 3369 2097 (Brulc et al. 2009)
Termite Gut 30924 1251 1167 (Warnecke et al. 2007)
Ocean 35248 6062 5222 (Shaw et al. 2008)
Coral 35251 1600 1520 (Sunagawa et al. 2009)
Hypersaline Mat 31588 1278 1174 (Isenbarger et al. 2008)
Grassland Soil 30925 1103 963 (Cruz-Martínez et al. 2009)

Table 2.5: Test datasets.

2.5.2 Preparation of reference databases

For each query data set, I built a reference database based on GreenGenes, excluding all se-
quences from the same study as the query sequences (whether near-full-length or not).

For the taxonomic identity of the reference sequences, I used the RDP taxonomy strings pro-
vided in GreenGenes, together with the species name from the "organism" field. I applied some
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simple corrections to make these taxonomy strings more consistent in cases where different
name variants clearly represented the the same taxon.

Each reference database was dereplicated at 99% using UCLUST 2.0.591 (Edgar 2010) such
that for any cluster of sequences with 99% identity only the longest sequence was used. This
reduced each database from approximately 500,000 sequences to approximately 140,000 rep-
resentatives, thereby correcting for database bias at the strain level, and substantally improving
performance of the downstream analyses.

The taxonomic identity of each reference cluster was usually unambiguous. For the occasional
cluster containing sequences differing in taxonomic classification, I assigned taxonomic posi-
tion at the deepest rank at which over half of the clustered sequences were in agreement.

2.5.3 Note on primer nomenclature

16S rRNA primers are conventionally named as follows. A one-letter prefix indicates the do-
main specificity of the primer (E = Eubacteria, A = Archaea, U = Universal). This is followed
by the position of the primer, given in E. coli reference coordinates– that is, the position in
the E. coli sequence homologous to the position in the sequence of interest where the primer
is found. These positions may differ between E. coli and other species due to insertions and
deletions, particularly at the beginning of the sequence. Finally, the suffix “F’ or “R” indicates
that the primer sequence is on the forward or the reverse strand, respectively.

Confusions commonly arise from differing interpretations of this naming scheme.

In my view, a primer should be named based on the starting position on the strand on which it
occurs. That position is still given in forward coordinates even if the primer is on the reverse
strand. For example, the commonly used primer name “U1046R” is a mistake, because the
primer actually begins at position 1064 (and proceeds to the left). The confusion may arise
because the primer ends at position 1046, or perhaps because a typographical error in an early
paper has been propagated in the literature. Also, the reverse complement of U1064R is a
forward primer, U1046F, so these may have become confounded. Even stranger, the primer
beginning at position 8 is frequently called E27F instead of E8F. This primer ends at position
27, but since it is on the forward strand it is especially hard to see why it would be named based
on the 3’ end.

It is also worth noting that different primer sequences may start at the same position: they
may have various levels of degeneracy (usually indicated by “N” characters in the sequence),
or minor variations in the fixed characters (producing different clade specificity), or differing
lengths. Thus a primer name does not unambiguously identify the primer; only the sequence
itself can do that. I append suffixes (e.g. “a”, “b”) to distinguish such primer variants, but these
are not conventional. Of course, it also commonly occurs that minor variants begin at different
positions; for instance, E9F is essentially the same primer as E8F, shorter by one nucleotide at
the 5’ end.

The primer sequence should be given on the strand where it occurs. Occasionally I have seen a
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primer described by the reverse complement of the actual sequence, which is clearly a mistake;
so it is worth checking that provided sequences are on the expected strand.

Further bugs may arise because the conventional nomenclature makes the unfortunate choice of
indicating positions in a 1-based system, and the interval is inclusive on both ends. For instance,
in the sequence ABCDEF, the sequence BCD is at positions 2-4. That seems intuitive, but ends
up being prone to off-by-one errors. For instance, the sequence has length 3, but 2 + 3 != 4.
Also, if coordinates on the opposite strand are needed, one cannot simply subtract from the
length of the sequence: D should be at position 3 on the reverse strand, but 6 - 4 = 2.

The long-standing solution to such problems in computer science is 0-based counting, inclusive
on the left but exclusive on the right. This is easily visualized by the realization that what is
counted is not the symbols themselves but rather the boundaries between the symbols. When
beginning to read the sequence ABCDEF (i.e., when one is about to read "A"), one has con-
sumed 0 symbols so far. Thus the sequence BCD is made up of positions 1, 2 and 3, so the end
points should be specified as "1" and "4" (after one has read D, one has read 4 symbols total).
Now 1 + 3 = 4, and the reverse coordinates are correct: 6 - 4 = 2 (the reverse position of D) and
6 - 1 = 5 (the reverse position after reading B). Sadly the 1-based system is now so entrenched
in bioinformatics that it likely cannot be corrected.

2.5.4 Choice of primers

50 forward and 44 reverse primer sequences were obtained from from a survey of literature on
primer choice. These were aligned to the 1541nt E. coli 16S sequence to confirm appropriate
naming. The primers were also mapped to the 7682-column NAST coordinates by alignment
to all GreenGenes sequences. In many cases, the primers began and ended in slightly different
NAST columns (+- 1-5nt) in different sequences, suggesting that there are errors in the Green-
Genes NAST alignment; I therefore report the column with the largest number of hits. Our
initial survey included 94 primers, but many of these were specific to Archaea or for some other
reason hit a small fraction of sequences in the environments we tested. Here, I selected the 22
forward and 22 reverse primers which hit at least 40% of the sequences in at least one of the
query datasets (Tables 2.6 and 2.7).

For PCR or paired-end sequencing, the selected primers could be combined into 374 viable
pairs for very short reads; as the read length increases, pairings spaced more closely than the
read length become unviable.

2.5.5 Simulation of sequencing reads

Reads were extracted from the full length query sequences using the 374 viable primer pairs and
read lengths of 50, 75, 100, 125, and 400, inclusive of primer length. Reads of 50-125 BP are
common read lengths available now and in the near future using “next-generation” sequencing
technologies such as Illumina; 400 BP sequences are available from Roche 454. In combination
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this produced 27,680 simulated datasets for the PCR-amplified single-ended case, and 12,920
datasets for the paired-end case.

Sequences which did not contain one of the requested primers at all were counted and included
later in the fraction of sequences that could not be classified using that primer.

2.5.6 Classification procedure

Sequences from each of the 40,600 simulated environmental data sets were classified according
to the following procedure.

For each read, the dereplicated reference database was searched using USEARCH 2.0.591
(Edgar 2010) with conservative parameters (“–allhits –maxaccepts 0 –maxrejects 128
–nowordcountreject”) to locate all hits of at least 80% identity over the length of the read, using
the USEARCH definition of identity.

This definition does not penalize insertions; that is, a query sequence that is identical to a target
except for an insertion would receive an identity score of 100%. Insertions and deletions can
be highly significant markers of taxonomic divergence, however, and furthermore they ought
to be scored symmetrically in this context . Identity scores were therefore corrected, using the
alignment information provided by USEARCH, to a definition in which insertions and deletions
are simply counted as mismatches.

From the set of database hits thus obtained, a set of the best hits was selected by choosing those
within 0.5% of the maximum %id observed. For read lengths < 200, this meant effectively that
those reads were chosen that were tied for the maximum %id score. For 200nt reads, one extra
mismatch was allowed (in addition to the number of mismatches between the query and the best
hit), and for 400nt reads, two additional mismatches were accepted. The purpose here was to
skim off a selection of the best available hits, while excluding more distant matches.

A consensus taxonomic position was then obtained from the taxonomic annotations of the se-
lected top hits using a simple hierarchical voting procedure: at each taxonomic rank, a name
was accepted if it was shared by at least half of the hits. In addition, the winning taxon was
required to have at least twice as many hits as the runner up; otherwise a tie was declared, and
no classification was made at that level. The resulting classification thus extended as far down
the tree as there was at least 50% agreement among the database clusters and not too many
dissenters. Database clusters that had no annotation were counted in the denominator; thus a
query sequence whose best hits were more than 50% unannotated could not be classified even
to the domain level.

I wished to avoid “overreaching”, i.e., predicting taxonomic position past the point of correct-
ness. This was controlled by voting threshold parameters: if I insisted on near-perfect agreement
among all the hits, then the procedure would generally classify very shallowly, because a few
hits anomalously disagree or simply have shallow annotations. Overly permissive thresholds,
conversely, would produce predictions that are very precise, but wrong. I found, from a very
coarse sampling of different thresholds, that only extremely stringent or extremely permissive
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thresholds had a noticeable impact on my final results; in a large middle range, my results were
not sensitive to the voting threshold. This is why I chose the simple majority-vote rule above.

Query sequences that hit more than 15,000 reference clusters were marked as overly generic and
were not classified. Thus, the procedure does not work for reads that are very short (and thus
nonspecific with respect to taxonomy), or perhaps for longer reads that are highly conserved in
a phylum that is highly represented in the database.

In sum my approach is something like a k-nearest-neighbor classifier, except that different num-
bers of neighbors are used for each query sequence depending on how many database hits are
(nearly) tied for the best %id score.

2.5.7 Reconcilation of paired-end classifications

In the case of paired ends, I found that requiring database hits to match both reads from a query
sequence produced too few hits.

For this reason, the above procedure was first applied to each of the two reads independently.
I then reconciled the annotations obtained from the two reads as follows. Starting from the
root of the tree and walking down rank by rank, a classification was accepted if the two reads
agreed. A classification was also accepted if it was present on one read, but the annotations
on the other read did not extend to that depth (e.g., if one read had annotations only to the
order level, then the annotations from the other read would be accepted to the species level, if
present, provided that they agreed up to the order point). If either of the primers did not hit the
sequence, of course, it was considered unclassifiable; similarly, if either of the sequenced reads
had no database hits at all, then the pair as a whole was considered to have no hits.

2.5.8 Precision vs Accuracy; “confident” predictions

Prior authors have reported the extent to which a classification can be made at all (i.e., preci-
sion), without regard for whether that classification is actually correct (accuracy). An obviously
problematic case is one in which all of the database hits to a sequence agree on genus, but these
hits are more than 5% divergent over their full length from the query sequence, indicating that
the query sequence is in fact not a member of that genus. It is not straightforward to limit the
taxonomic level of the predictions on the basis of the observed %id of a sequence fragment,
however, because the identity threshold associated with each level is variable throughout the
sequence, and different fragments would give inconsistent results.

I therefore used annotations on the query sequences, where available, to evaluate the accuracy
of the taxonomic predictions at each level. Within each query dataset, for each primer and read
length, and for each taxonomic level, I computed the proportion of predictions that proved cor-
rect, out of those sequences that were annotated at that level at all. I then applied two confidence
thresholds, 80% and 95%, to determine which primer/read length combinations produce trust-
worthy classifications under the given circumstances. I then removed all predictions that were



41

deemed unreliable; for instance, a genus-level prediction for some sequence might be truncated
to the order level, because more detailed predictions were found to be wrong more than 20% of
the time for the given primer, read length, and environment.

2.5.9 Choice of representative optimal primers

I exhaustively computed the classification rate for thousands of combinations of primer, read
length, experiment type, environment, taxonomic level, and confidence level. I found that some
choices of primer and read length provided more classifications (at a given confidence level)
than certain other choices across all environments tested. My results suggest, for example,
that one should not use primer E357R with 100nt reads for taxonomic classification, because
primer E517F with 75nt reads is always at least as informative at the genus level (and usually
much more so). In fact, for phylum level classifications, reads of only 50nt from E517F are
substantially more informative. I filtered the results tables to exclude choices of primer and
read length that were uniformly less informative than others of the same or shorter read length.
I further filtered them, for the sake of tractable presentation, to include only primers that achieve
at least 90% of the optimum classification rate (per read length) in at least one environment.

In a few cases, several choices provided nearly equivalent classification performance, particu-
larly involving closely related primers such as E517F and U515F. I considered two choices to
be equivalent (for a given taxonomic level and confidence level) if they provided classification
rates within one percentage point in all environments. In these cases I list each alternative but
report the classification performance of one arbitrarily chosen representative.

The entries that remained after this filter was applied highlight the trade-offs inherent in the
choice of primer and read length. Each remaining entry is optimal according to some criterion.
For instance, for genus predictions from 75 nt reads, E533R classifies more of the steer rumen
sample than does E517F, but E517F is able to classify sequences from the termite gut sample,
where E533R makes no confident predictions; and neither of them can classify any of the hyper-
saline mat sample, where only E1238R produces confident predictions. Note that other primers
may also allow classification of some of the hypersaline mat sample, but they are not mentioned
in the table because E1238R always outperforms them (in all environments).
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Chapter 3

Optimizing primer choice for OTU
clustering of short-read environmental 16S
sequences

3.1 Abstract

Variation in the sequence of the 16S ribosomal RNA provides a means of assessing the phylo-
genetic diversity and structure of microbial communities through amplification and sequencing
from environmental samples. The basic approach has been known since the mid-1980s, but the
relatively recent development of low-cost, high throughput sequencing has produced a dramatic
explosion of interest in the field. Environmental sequences are typically clustered into "opera-
tional taxonomic units"(OTUs), because highly similar sequences are likely to have originated
from the same species. However, the fidelity of this clustering is compromised when the avail-
able sequences are short, as is the case with current sequencing technologies. Here, I assess how
the choices of amplification and sequencing primers and of read length impact the clustering
results, and conclude that, for the currently typical read lengths, the most accurate clusterings
are achieved using reads sequenced from primer E517F.

3.2 Introduction

The application of next-generation sequencing technologies to survey the diversity of 16S ri-
bosomal RNA sequences in environmental samples is revolutionizing the field of microbial
ecology (Tringe and Hugenholtz 2008). Where the Sanger method was previously used to ob-
tain hundreds of half- to full-length 16S sequences per sample, modern methods available from
Roche/454, Illumina, and others can provide millions of sequences per sample, albeit at short
read lengths of 75 to 400 nucleotides. This approach has already yielded fascinating insights
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into the ecology of many environments (Caporaso et al. 2010), including the human gut (An-
dersson et al. 2008; Dethlefsen et al. 2008; Turnbaugh et al. 2010) and other body habitats
(Sundquist et al. 2007; Fierer et al. 2008; Grice et al. 2009; Lazarevic et al. 2009; Nasidze et al.
2009), soils (Chu et al. 2010), and oceans (Huse et al. 2008; Galand et al. 2009).

One of the first steps in analyzing an environmental sequence data set is to cluster similar se-
quences together, typically using a program such as FastGroupII (Yu et al. 2006), CD-HIT (Li
and Godzik 2006; Li et al. 2008b), or UCLUST (Edgar 2010). Depending on the purpose, se-
quences may initially be dereplicated, clustering them only if they are nearly identical (allowing
for sequencing error and minor intragenomic variation). More frequently they are immediately
grouped into "operational taxonomic units" (OTUs) at a lower level of identity such as 97%, as-
sociated roughly with the species level. This clustering provides the first glimpse of community
structure, in the form of the number of species observed (richness) and their relative abundance
distribution (evenness). It also makes downstream analyses more tractable (such as assignment
of sequences to known taxa (Chapter 2), and computation of alpha and beta diversity measures
(Magurran 2004) including UniFrac (Lozupone and Knight 2005)), by collapsing large num-
bers of redundant sequences, the analysis of which would be computationally expensive but
uninformative, into a single representative.

The conventional rough correspondence of rRNA percent identity scores with taxonomic ranks
(i.e., 97% = species, 95% = genus) was established with respect to full-length sequences (Wayne
et al. 1987; Vandamme et al. 1996; Hugenholtz et al. 1998; Gevers et al. 2005; Goris et al.
2007). When only fragmentary sequences are available, the pairwise percent identity scores
between these fragments do not perfectly mirror the percent identities that would have been
found from full-length sequences, because of the well-known variations in mutation rate within
the 16S sequence (Van de Peer et al. 1996a). Fragment percent identity scores should therefore
be considered a noisy proxy for full length scores. Indeed, the use of sequence fragments is
only one of many kinds of variation in how percent identity scores are obtained; others include
variation in the alignment method, the use of the Lane mask (Lane 1991), and even the definition
of "percent identity" itself (Schloss 2010). All of these can be thought of as sources of noise in
the pairwise distances.

The question arises, then, to what extent the use of noisy distances impacts the results of the
clustering procedure, and hence of downstream analyses. Here, I addressed this issue first with
respect to noise in general, to get a sense of the overall magnitude of the problem. Next, I
considered the choice of sequencing primer and read length, with the goal of recommending
experimental choices that minimize noise and thereby produce a clustering that is as similar as
possible to the full-length case.

This question also bears on taxonomic classification, which I treat explicitly in Chapter 2. The
reason is that hypervariable regions mutate too rapidly to expect to find exact matches to en-
vironmental sequences in reference databases, at least given the level of coverage that these
databases currently provide. Thus, the first step in annotating an environmental sequence is to
identify database sequences that are likely to be in the same OTU.
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3.3 Results

3.3.1 The response of clustering procedures to noise in the distance ma-
trix

OTU counts depend primarily on the proportion of pairwise distances within the cluster-
ing threshold, not on the distances themselves

There are many important aspects of a clustering result, of course, but as a first step I simply
considered the impact of noise on the one of the most basic outputs of a clustering procedure:
the number of clusters (or OTUs) produced.

OTU clusterings are largely based on separating the set of all read pairs into two classes: those
that are more than 97% identical, and those that are not. The single-linkage algorithm (aka
“nearest neighbor” from DOTUR (Schloss and Handelsman 2005)) can be formulated as op-
erating purely on this partition of read pairs, without reference to the actual distances. The
complete-linkage (“furthest neighbor”) clustering algorithm operates on only those sequence
pairs in the close-distance set, and ignores the far pairs; the contribution of the distances is
to choose the order in which nodes are agglomerated, thereby selecting one of possibly many
clusterings that meet the complete-linkage criterion. Greedy clustering methods such as those
provided by CD-HIT and UCLUST similarly consider only the close distances–in fact, only
those between each input sequence and a limited number of “seed” sequences. The average-
neighbor method (UPGMA) is the only one to which far distances may contribute, because they
contribute to the distances computed between agglomerated clusters.

I first asked whether the exact values of the pairwise distances have an impact on the OTU count,
assuming that the partitioning into near and far pairs is correct. Starting from a distance matrix
relating sequences in a real dataset from a soil sample, I completely scrambled the distances less
than 0.03 (97% identity) and those greater than 0.03, i.e. applying the transformation shown
in Fig. 3.1. Any distance less than 0.03 was replaced with a distance uniformly sampled from
the interval 0-0.03, and any distance greater than 0.03 was replaced with a distance uniformly
sampled between 0.03 and 0.6. I then performed OTU clustering on this scrambled distance
matrix; 100 repetitions produce a histogram of OTU counts.

Because the single-linkage method ignores distances once the partitioning is known, it naturally
produced the same result in each case. The variation in OTU count using the complete-linkage
method is due exclusively to the altered order of agglomeration of nodes into clusters. In the
average-linkage case, agglomeration order plays a role, but so do the (now randomized) distance
values; nonetheless the distribution is no wider than that produced by complete linkage.

The two types of error have different effects, depending on the clustering method (The
clustering obtained responds differently to false positives and false negatives)

The results of the previous section show that the first step of clustering is simply a binary clas-
sification problem: the pairwise distances must be separated into those that are within a given
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Figure 3.1: The distance-scrambling transformation
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Figure 3.2: Distribution of OTU counts from a soil dataset, obtained from scrambling the dis-
tances, assuming correct partitioning. The solid bars show the number of clusters produced by
three clustering procedures prior to distance scrambling. The histograms show the distributions
of the number of clusters produced by each procedure after scrambling, for 100 replicates.
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distance threshold, and those that are not. A noisy distance measure will make two kinds of
mistakes: it will call some distant pairs close (false positives; reduced specificity) and will call
some close pairs far (false negatives; reduced sensitivity). Because the effect of this mispar-
titioning on the resulting OTU count dominates the effect of the specific distance values, we
can simply describe any noise distribution by the sensitivity and specificity with respect to this
binary classification problem.

I empirically determined the influence of partitioning noise on OTU counts for an example soil
dataset. For purposes of this experiment, I considered DNADIST distances between full-length
sequences aligned by NAST (Desantis et al. 2006a) to be the reference distances (though this
choice should not impact the outcome at all). Then I scrambled the distances as above, this time
allowing false positives and false negatives in various proportions (fig 3.4), and then clustered
the data based on the noisy distances. I repeated this process 100 times for each clustering
method. The dependence of mean OTU count on the proportion of false positives and false
negatives is shown in Figure 3.5.

The single-linkage clustering process reacts to false negatives by increasing the number of clus-
ters, because often the close link that is missed is the only one that connects two clusters.
Conversely, false positives rapidly reduce the number of clusters, because each false positive is
likely to join two clusters that would otherwise have been separate.

The complete-linkage clustering process also reacts to false negatives by increasing the number
of clusters, because removing any link from a clique makes it no longer a clique, so it must be
broken in two. Complete linkage is less responsive to false positives, however. The reason for
this is that joining two cliques together requires adding n*m links (the sizes of the two cliques,
respectively), which is very unlikely even with a large number of false positives.

The greedy clustering algorithms are already heuristic in nature, because they do not consider
even all of the “close” pairwise distances. Rather, they compute distances only to limited set
of representative sequences, the selection of which is highly sensitive to the order in which the
inputs are presented. I did not evaluate the relative contribution of that source of noise compared
to noise in the distances. Nonetheless it is clear that a false positive “close” distance may prevent
the creation of a new cluster, by causing a sequence to be added to an existing cluster when
otherwise it would have become a new seed. On the other hand, when the next input arrives
that would have been added to the missed cluster, it will likely seed an an analogous cluster of
its own, thereby muting the effect of the original false positive. A false negative may have the
reverse effect, resulting in the creation of a new seed, but only if the match that is missed is the
only one available; otherwise the sequence will simply be associated with the next-nearest seed.
The relative frequencies of these various kinds of events depends on the number of seeds and
the (eventual) distribution of cluster sizes. Overall, it seems likely that noise in the distances
may produce many minor errors (i.e., assignment of a sequence to the wrong cluster), but far
fewer major ones (creation of too few or too many clusters), because the vast majority of errors
have consequences only for a single sequence before they are forgotten. This is in contrast
to the non-heuristic methods, where individual errors (especially false negatives) compound,
and thus are more likely to impact the cluster count. In any case, the entangled and opposing
contributions of various sources of noise call for a more thorough empirical investigation of the
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Figure 3.3: Example of noise when predicting full-length %id from a proxy distance. Each
point represents a pair of sequences. Full-length percent difference appears on the Y axis, and
percent difference between 300bp reads from E8F appears on the X. This region evolves more
quickly than average, so that the distribution falls below the y=x line. If one were to predict
pairs whose full-length %id is 97% or better simply by choosing those whose fragment %id
is 97% or better, one would thus incur substantially more false negatives than false positives.
The error types could be balanced, and perhaps the total number of errors decreased, by using a
lower threshold on the fragment axis (e.g., 95%) to predict 97% identity on the full-length axis.



49

Figure 3.4: The distance-scrambling transformation, with noise.
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Figure 3.5: Mean OTU count vs. different amounts of noise for all three linkage methods.
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greedy heuristic approach.

Complete linkage clustering is the only one that makes sense with respect to phylogeny

We cluster similar sequences together to indicate that they belong to the same taxon, i.e. that
they are members of a subtree on a phylogeny descending from a common ancestor. In this view,
the most appropriate clustering procedure would be simply to build phylogenies and choose
appropriately sized subtrees. However, the computational cost of doing this is prohibitive given
the very large numbers of sequences that can now be produced.

Of the simple clustering methods discussed here, only the complete linkage approach is com-
patible with the phylogenetic view of the problem. This is a simple consequence of the con-
ventional definitions that two sequences can be in the same OTU only if they are within a given
distance of one another, and that taxa are monophyletic. Under these definitions, an OTU is a
subtree with the property that the greatest distance between any two leaves is no greater than a
given threshold (e.g., 3%). That is almost exactly the complete-linkage criterion, assuming that
the tree distances closely reflect distances based on sequence identity scores.

The average linkage, single linkage, and star methods all commonly create clusters containing
pairs of sequences that are more distant than the allowable threshold. Placed on a phylogeny,
the common ancestor of sequences in such a cluster would therefore be higher in the tree than
in the complete-linkage case. Worse, these methods provide no assurance that the clusters are
nonoverlapping on the tree. Even complete linkage does not guarantee monophyletic clusters,
because one taxon may be contained within another (i.e., the common ancestor of one taxon
may descend from the common ancestor of another taxon); but at least it cannot happen that the
clusters overlap, so that descendants of both common ancestors include members of both taxa.

3.3.2 Choice of maximally informative primer and read length

Some sequence regions are much better at predicting “near” vs. “far” than others

I wished to evaluate the ability of each sequence region to distinguish same-taxon from different-
taxon pairs–that is, the ability of each region to predict, from a pair of fragments, whether
the percent identity score for the corresponding pair of full-length sequences is within a given
threshold or not. I sought to predict thresholds of 95%, 97%, and 98.5%, roughly corresponding
to the genus, species, and strain levels, respectively.

I started from from near-full-length sequences in GreenGenes, and extracted those associated
with three environment types: human gut, soil, and ocean. I then simulated short read sequenc-
ing experiments, extracting reads of various lengths starting from 44 primers. For each choice of
primer and read length, I determined the threshold percent identity between the fragments that
provided the best classification performance with respect to taxon clusters determined from the
full-length sequences. For fragments that evolve more rapidly than average, the fragment %id
threshold should be higher than the target full-length %id, and conversely for more conserved
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regions. For consistency with the next section, I performed the optimization using an SVM
(even though that is overkill for this problem). Figure 3.6 shows the classification performance
obtained for each combination of primer and read length.

These figures demonstrate that the choice of primer and read length does indeed have a large
impact on the accuracy with which pairs of sequences can be determined to be in the same taxon
or not. I had expected genus level distinctions to be easier to make than strain level distinctions,
and was surprised to find that the best primers were able to make classifications of comparable
accuracy across all three taxonomic levels.

I used the class-normalized sensitivity as a simple measure of classification performance: that
is, the average of the sensitivity with respect to identifying same-taxon pairs and the sensitivity
with respect to identifying different-taxon pairs. This number can also be thought of as the
accuracy of predictions in the case that the classes are balanced, i.e. when there are equally
many positive and negative examples.

This measure is not meant to reflect the composition of real environments, which can differ
greatly in the proportion between the classes. For instance, in a sample that is both very diverse
and very even, the proportion of sequence pairs originating from the same species will be very
small (indeed, for a small sample size, it may happen that no two sequences come from the same
species). In a sample that is dominated by a few species, conversely, the proportion of within-
species pairs may be quite large. The test datasets employed here aggregate sequences from
multiple sources, and are sampled nonuniformly (see section 3.5.2); thus, the resulting accuracy
measure does not predict classification performance for any particular real environment. Rather,
it is a relative measure that allows me to rank the primer/read length combinations to determine
which one is the most informative. I assume that this ranking of primers will be consistent
between environments of different composition.

Note too that this measure takes into account the fact that some primers hit fewer sequences than
others. Because the class sensitivities are measured with respect to the total sample, reduced
primer coverage simply reduces both of them.

Table 3.1 lists the fragment class-normalized sensitivity values obtained for the primers that
produce the best results for each read length in each of the three environment types, and Table
3.2 lists the corresponding %id thresholds. For read lengths of 75, 100, and 125nt, primer E517F
achieved optimal performance for nearly every combination of environment and taxonomic
level. Notably, primer E969Fi proved substantially better at distinguishing strains in human gut,
but dramatically worse in the other two environments; indeed 75nt reads from E517F performed
better under all other circumstances.

Paired-end sequencing offers no benefit

We hypothesized that paired-end reads might be more effective than single reads at determining
whether two sequences come from the same species or not, both because there is simply twice
as much sequence to work with for a given read length, and because we thought that the reads
might provide different kinds of information. For instance, one fairly conserved region might
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Figure 3.6: Impact of primer and read length on classification of sequence pairs into within-
taxon and between-taxon pairs, for different environment types and taxon sizes. 231 possible
choices of primers and read lengths are sorted on the X axis by overall accuracy. The bars above
each choice show the proportions of pairs of sequences, sampled as described in section 3.5.2,
that are correctly or incorrectly classified.
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Class-normalized sensitivity for making taxon distinctions

Genus Species Strain
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um

an
G

ut

O
ce

an

So
il

H
um

an
G

ut

O
ce

an

So
il

H
um

an
G

ut

O
ce

an

So
il

E1064Ri 0.73 0.63 0.63 0.76 0.71 0.71 0.71 0.67 0.67

50 E1391F 0.74 0.65 0.67 0.76 0.72 0.68 0.58 0.65 0.47

U529R, E533Ra 0.69 0.69 0.67 0.68 0.74 0.71 0.56 0.61 0.59

E969Fi 0.76 0.44 0.51 0.79 0.49 0.55 0.73 0.44 0.53

E517F 0.79 0.71 0.66 0.85 0.76 0.75 0.66 0.70 0.63

U515F 0.70 0.65 0.68 0.81 0.72 0.72 0.59 0.59 0.55

75 U529R 0.66 0.67 0.66 0.77 0.74 0.74 0.58 0.67 0.66

E1064Ri 0.74 0.63 0.66 0.76 0.71 0.72 0.70 0.67 0.70

E926Ra 0.70 0.64 0.69 0.72 0.64 0.71 0.60 0.62 0.59

E969Fi 0.78 0.44 0.54 0.80 0.51 0.57 0.75 0.47 0.54

100 E517F 0.82 0.76 0.73 0.87 0.79 0.77 0.71 0.70 0.69

E969Fi 0.78 0.44 0.54 0.80 0.51 0.57 0.75 0.47 0.54

125 E517F, U515F 0.78 0.77 0.73 0.87 0.79 0.78 0.74 0.72 0.73

400 U529R, E533Ra 0.83 0.84 0.84 0.91 0.86 0.87 0.83 0.84 0.81

Table 3.1: Primers producing optimal clustering fidelity at each read length. Hundreds of com-
binations that produce suboptimal results are not shown (see Materials & Methods 3.5.5). The
highlighted cells indicate the best achievable classification rates for each environment and read
length.
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Optimal difference threshold for making taxon distinctions

Genus (5%) Species (3%) Strain (1.5%)

read length primer H
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E1064Ri 10.1% 8.0% 11.7% 4.5% 3.1% 4.6% 3.1% 2.6% 3.1%

50 E1391F 2.0% 3.1% 5.3% 1.0% 1.7% 1.0% 1.0% 1.0% 0.0%

U529R, E533Ra 2.0% 2.9% 3.1% 1.0% 1.0% 1.6% 1.0% 1.0% 1.0%

E969Fi 9.8% 8.9% 9.9% 6.0% 4.2% 4.2% 3.1% 2.0% 2.0%

E517F 2.0% 2.0% 2.7% 0.6% 0.6% 1.3% 0.6% 0.6% 0.6%

U515F 1.3% 1.3% 2.0% 0.6% 0.6% 1.3% 0.6% 0.6% 0.6%

75 U529R 4.2% 8.0% 7.2% 1.6% 4.2% 3.6% 1.3% 2.0% 2.4%

E1064Ri 12.6% 9.5% 12.9% 5.7% 4.2% 5.7% 4.2% 2.0% 3.4%

E926Ra 2.0% 2.7% 2.0% 0.9% 1.3% 0.6% 0.6% 0.6% 0.6%

E969Fi 13.6% 10.3% 12.6% 5.9% 4.2% 5.7% 4.2% 2.0% 2.7%

100 E517F 3.6% 3.6% 4.1% 1.5% 1.5% 2.0% 0.5% 1.5% 1.0%

E969Fi 9.5% 8.1% 9.2% 4.7% 3.1% 4.2% 3.1% 1.5% 2.0%

125 E517F, U515F 4.1% 4.5% 5.4% 1.6% 1.6% 2.0% 0.8% 1.2% 1.2%

400 U529R, E533Ra 4.7% 6.2% 5.9% 2.8% 3.7% 3.5% 1.2% 1.7% 1.6%

Table 3.2: Percent difference threshold between sequence fragments corresponding to full-
length percent difference thresholds. These thresholds were found to produce the best avail-
able discrimination of within-taxon and between-taxon pairs. Values that are higher than the
corresponding full-length value indicate a sequence region with a higher average mutation rate
than the sequence as a whole. For instance, primer E1064Ri targets a hypervariable region,
so that 8%-13% sequence difference is required to conclude that two sequences originate from
different genera, where 5% would be sufficient given full-length sequence. Conversely, primer
E517F targets a conserved region, reflected here in percent difference thresholds that are lower
than the full-length thresholds that they predict. Only optimal primer choices from table 3.1 are
listed; the complete table for all choices of primer and read length is available in the supple-
mentary material. Values seem to have more significant figures than is possible given the read
length (e.g., for 50nt reads, thresholds ought to be quantized in 2% increments); this reflects the
fact that the SVM learns a decision boundary that lies between the input data points. Also, the
occasional insertion event causes the inputs to be imperfectly quantized.
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maximum achievable class-normalized sensitivity

Genus Species Strain

type read length H
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50 0.76 0.69 0.67 0.79 0.74 0.71 0.73 0.67 0.67

75 0.79 0.71 0.69 0.85 0.76 0.75 0.75 0.70 0.70

single-ended 100 0.82 0.76 0.73 0.87 0.79 0.77

125 0.77 0.78 0.72 0.73

400 0.83 0.84 0.84 0.91 0.86 0.87 0.83 0.84 0.81

50 0.76 0.69 0.67 0.79 0.74 0.71 0.73 0.67 0.67

75 0.79 0.71 0.72 0.85 0.76 0.75 0.75 0.71 0.70

paired-end 100 0.83 0.77 0.75 0.87 0.79 0.77 0.73 0.74

125 0.79 0.77 0.89 0.8 0.78 0.76 0.76

400 0.90 0.84 0.84 0.91 0.86 0.87 0.86 0.84 0.81

Table 3.3: Paired-end sequencing offers little improvement over single-ended sequencing
in class-normalized sensitivity for predicting co-clustering. The class-normalized sensitivity
shown in each cell is the maximum value observed for any choice of primers at each respective
read length. Empty cells indicate no improvement over shorter reads. Cells are highlighted
when paired-end sequencing provides an improvement over single-ended sequencing using the
same read length. Despite having twice as much sequence to work with, only about one third
of the paired-end cells are thus highlighted, and even these provide minimal gains compared to
the corresponding single-end experiments.

be good at making high-level phylum distinctions, while another, more variable region might be
good at making fine-grained species distinctions within a phylum, but less good at the phylum
level because too many mutations accumulate over long evolutionary distances. In such a case,
combining information from both reads could provide improved discrimination.

Under that hypothesis, one way to use paired-end reads to predict whether two sequences have
a common species origin would be to be compute the %id scores for each read individually, and
then to use a weighted mixture of these to predict whether the full-length %id falls within 97%
or not. That is, we would want to count mutations in a conserved region as more significant
than mutations in a variable region.

I evaluated this question using a simple SVM classifier with a linear kernel. This procedure
learned the weights to be assigned to each read in order to maximize discrimination perfor-
mance. The cartoon in Figure 3.7 helps to visualize this approach: for a large set of pairs of
full-length sequences, and a given pair of primers producing short reads, the task is to choose
the line that best separates the green points (within-taxon) from the red ones (between taxa).
Because the green and red points are not linearly separable, some number of misclassifications
must be accepted, but this number is to be minimized.

Table 3.3 shows the best class-normalized sensitivity achievable using any pair of primers for



57

Figure 3.7: Cartoon of the SVM task for predicting common taxon origin from paired-end
sequence fragments. Each point represents a pair of sequences, colored according to whether
the full-length percent identity is at least 97% (green) or not (red). The X and Y axes represent
the percent identities of short reads extracted from those sequence pairs, using a forward and
a reverse primer, respectively. If a line could be found that separates the red points from the
green, that would indicate that paired-end sequencing using the chosen combination of primers
and read length could be used to accurately predict whether the sequences originate from the
same taxon or not. In practice, perfect separation cannot be achieved; thus the task is to choose
the line to minimize prediction errors.
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each read length, and compares these with the best sensitivities achievable from single-ended
reads. I was surprised to find that paired-end sequencing does not appreciably improve classifi-
cations. Compared with the best single-ended primer choices, the best paired-end experiments
(using twice as much sequence in total) show an improvement of at most a few percent, and
none at all at all in the majority of cases. The result is more dramatic when the total amount of
sequence is held fixed (on the argument that cost scales roughly per nucleotide): a single read
of 100nt always outperforms a pair of 50nt reads, and a single 125nt read always matches or
outperforms a pair of 75nt reads.

I repeated the paired-end experiments using the Gaussian RBF kernel, which can learn non-
linear boundaries between the two classes. I performed a grid search to optimize the parameters
C and gamma. I found that this did not offer improved performance over the linear kernel
(data not shown). This suggests that the fragment percent identity values for the two ends
are independent given the full-length percent identity. In other words, I detected no nonlinear
dependence among mutation rates between any two regions that might be exploitable for the
classification task.

In combination, these findings falsify our hypothesis that information from two regions of the
16S sequence might be combined to provide substantially greater taxon clustering accuracy than
a single region.

3.4 Discussion

I have shown that environmental 16S surveys should be performed using primer E517F, in
order to distinguish within-OTU from between-OTU sequence pairs as accurately as possible
given the read length limitations of current sequencing technologies. Because OTU clustering
depends largely on this distinction, making this optimal choice will provide the clustering result
that most closely resembles that which would be obtained from full-length sequencing.

This is a somewhat indirect argument; what is important, ultimately, is whether the choice of
primer and read length impacts downstream biological conclusions.

Ecological diversity measures such as richness, evenness, and many others form one frequently
reported class of results from environmental surveys. I showed that the simplest of these, the
OTU richness, is quite sensitive to noise in the pairwise distances between environmental se-
quences, and that a suboptimal choice of primer will introduce such noise in abundance. This
suggests that richness and other diversity measures derived from short read sequencing using
suboptimal primers should be treated with substantial skepticism.

On the other hand, it was previously shown that the unweighted UniFrac beta diversity measure
is not very sensitive to the choice of primer (using a more limited set) (Liu et al. 2007). This
finding may be explained by the fact that UniFrac is a phylogenetic method, where the con-
tribution of long branch lengths nearer the root of the tree dominates the result. The errors in
OTU clustering which I have attempted to minimize here most likely to occur near the leaves
of the tree: for instance, noise in the pairwise distances may substantially alter the number of



59

species detected, but it is much less likely to alter the number and abundance distribution at
the phylum or class level. Thus, because UniFrac measures primarily the concordance between
two communities at higher levels of the tree, it makes sense that it is not particularly sensitive
to errors in distinguishing species or genera from one another. On the basis of this argument, I
speculate (though I have not confirmed) that UniFrac values should be fairly robust to the OTU
clustering threshold; that is, the clustering of similar environments based on UniFrac distances
may be largely the same when only class-level OTUs are considered (for example) instead of
the more commonly used species-level OTUs.

The authors of that study recommended primer E357R on the basis that UniFrac-based clusters
of environmental samples sequenced from that primer recapitulate the clusters obtained from
full-length sequencing (for example, grouping gut samples from mouse littermates together
with their mother) better than other primers. I cannot explain this finding using the present
results. Primer E357R provides middling performance in our evaluation– substantially worse
than several of the other primers they tested, especially of course E517F. I would expect that
more accurate clustering of sequences within a sample would lead to more accurate clustering
of samples based on UniFrac distances.

Another type of biological result of widespread interest is taxonomic classification of envi-
ronmental sequences. I addressed the question of primer choice for that problem explicitly in
Chapter 2. Nearly all of the primers reported here as optimal for unsupervised clustering were
found in that study to be near optimal for supervised classification as well. I also found in both
studies that paired-end sequencing provides no benefit. In particular, single-ended reads from
primer E517F provided the most accurate results in both studies across a range of read lengths
and environments. This concordance is particularly notable because the prior study was based
on completely different methods and different (though partly overlapping) input datasets, and
had a different goal.

One possible explanation for the previous classification results is as follows. I showed here that
the region following E517F is particularly good at identifying close relatives. Thus, compared
to other regions, this region tended to match sequences in the reference database that were
both more likely to be in the same taxon as the query sequence and consequently more likely
to agree with one another with respect to taxonomic annotation. Since both supervised and
unsupervised clustering procedures depend on a distance measure, then, more accurate distance
estimates produce more accurate results in both cases.

As in the prior study, I found no clear indication that hypervariable regions should or should
not be targeted for sequencing. For 50nt reads, the best strain-level distinctions are made us-
ing either E969Fi (only for the human gut dataset) or E1064Ri, both of which produce reads
including about 20nt of the V6 hypervariable region. The high variability of these sequences
is reflected in the percent difference thresholds shown in table 3.2, which are much higher than
the full-length thresholds that they predict. The best strain-level distinctions in human gut us-
ing 100nt sequences were also obtained with primer E969Fi, including all of V6; but for every
other combination of environment and taxonomic level, even 75nt reads from E517F performed
better, despite consisting almost entirely of the relatively conserved region between V3 and
V4. Because of this sequence conservation, lower percent difference thresholds are required
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for reads from E517F; for instance, a threshold of 2.0%-2.7% sequence difference produces the
most accurate genus-level distinctions (corresponding to 5% difference for the full-length se-
quence). Similarly, reads of 75nt from U529R include most of V3 (~40nt), yet 50nt reads from
E1391F perform largely comparably while including only 10nt of V9. The argument has been
made that hypervariable regions (especially V3 and V6) are likely to make cleaner distinctions
among strains within a sample than is possible using more conserved regions (Wang et al. 2007;
Huse et al. 2008). Our results do not support this assertion, except perhaps for very short reads.

I conclude that 16S primers and read lengths should be chosen on the basis of their empirical
performance for the task at hand, not on the basis of emphasizing hypervariable regions or even
necessarily of maximizing read length. Based on simulated experiments using thousands of
combinations of primers, read lengths, and environments, I found that primer E517F provides
optimal or near-optimal accuracy (with respect to analogous results from full-length sequenc-
ing) for both supervised and unsupervised clustering tasks in nearly every circumstance.

3.5 Materials & Methods

3.5.1 Construction of test datasets

I downloaded the GreenGenes database (version of August 25, 2010) and selected near-full-
length sequences by requiring that each sequence span hypervariable regions V1 through V9
(specifically, extending from positions 69 to 1465 in E. coli coordinates). This condition is met
by 188,580 of the 508,194 total sequences in GreenGenes. I then determined the environment
type from which each sequence originated, by simple text matching on the “isolation_source”
field. For instance, I assigned the label “Ocean” to any sequences whose isolation source con-
tained one of the words “marine”, “harbor”, “plankton”, and so on. I thereby extracted sets of
full-length sequences from human gut, soil, and ocean.

I partially dereplicated each of these datasets by clustering them at 97% identity using UCLUST.
For clusters with fewer than ten members, all were retained; for larger clusters, I randomly
selected ten representatives. This step removed some degree of database bias at the species
level within each set, while retaining many within-species sequence pairs.

3.5.2 Sampling of full-length sequence pairs

I sampled pairs of sequences from each environment in a manner that allowed us to test how
well within-taxon pairs could be distinguished from between-taxon pairs. First, I reasoned that
very divergent pairs of sequences, those with less than 90% identity, can easily be identified
as coming from different genuses, and thus need not be included in the experiment. I there-
fore sampled 5000 sequence pairs per environment such that their percent identity scores were
uniformly distributed between 90% and 100%. Thus, for the genus level (95% identity) experi-
ments, there were roughly equal numbers of positive examples (within-taxon pairs) and negative
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examples (between-taxon pairs). For the species level (97% identity) experiments, roughly 30%
of the examples were in the positive class. For the strain level (98.5% identity) experiments, I
sampled 5000 sequence pairs uniformly distributed between 95% and 100% identity, so that the
positive examples represented roughly 30% of the total here also.

3.5.3 Extraction of sequence reads

I simulated single-ended next-generation sequencing experiments by extracting reads of lengths
50, 75, 100, 125, and 400 nt starting from 44 universal bacterial primers, for a total of 220 viable
combinations. I also simulated paired-end experiments by generating the 1619 viable pairings
of those reads. The primers were chosen as previously described (Section 2.5.4).

3.5.4 SVM training

I trained a support vector machine for each environment, primer or pair of primers, and read
length, and measured classification performance using 5-fold cross-validation. For each of the
5000 sequence pairs in each dataset, the true within- or between-taxon relationship was known
from the full-length percent identity. For paired-end reads, the inputs were the percent iden-
tity scores computed independently for each end. For single reads, there was only one input:
the percent identity of the read. Thus the SVM reduced to finding the percent identity thresh-
old for the fragment that best corresponds to the percent identity for the full-length sequence
(effectively, a measure of the local mutation rate).

I used my jLibSvm software (http://dev.davidsoergel.com/jlibsvm, a refactored Java port of
LIBSVM (Chang and Lin 2001)) with a linear kernel. For each scenario, I performed a grid
search to obtain the optimal value of the cost parameter C. I adjusted C for the positive and
negative examples to correct for the size imbalance between the two classes, so as to make
misclassifications on either side equally important.

For the paired-end scenarios, I repeated the experiment using a Gaussian (RBF) kernel, per-
forming a grid search over the parameters C and gamma.

For each scenario, then, I obtained the proportion of sequence pairs that could not be compared
because one of the primers did not hit one of the sequences, and the proportions of true positives,
true negatives, false positives, and false negatives produced by the optimized classifier.

3.5.5 Choice of representative optimal primers

I exhaustively computed the best achievable classification performance for thousands of combi-
nations of primer, read length, environment, and taxonomic level. I found that some choices of
primer and read length provided better classifications than certain other choices across all levels
and environments tested. My results suggest, for example, that there is no reason to use primer
E357R with 100nt reads, because primer E517F with 75nt reads is always more informative. I
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filtered the results table to exclude choices of primer and read length that were uniformly less
informative than others of the same or shorter read length.

In a few cases, several choices provided nearly equivalent classification performance, particu-
larly involving closely related primers such as E517F and U515F. I considered two choices to be
equivalent (for a given taxonomic level and confidence level) if they provided class-normalized
sensitivities within one percentage point for all levels and in all environments. In these cases I
list each alternative but report the classification performance of one arbitrarily chosen represen-
tative.
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Part II

Binning Methods
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Chapter 4

Supervised compositional binning methods
are doomed on natural metagenomic
samples

4.1 Abstract

The application of genome sequencing to microbial communities in recent years has produced
an ever-increasing flood of “metagenomic” data, consisting of millions of shotgun reads se-
quenced directly from numerous environments. An essential step in analyzing these data is to
classify the reads into taxonomic groups, both in order to estimate the species composition of the
community (for comparison with 16S surveys) and more importantly to link metabolic functions
with the organisms that contain them. The ability to solve this “binning” problem accurately
would have great consequences for detection and treatment of human disease, biosensing, bio-
prospecting, bioremediation, and understanding biogeochemical cycles. Conversely, the ability
to observe the species distribution of specific genes of unknown function may aid in determining
their role.

Numerous procedures have been proposed for supervised taxonomic classification, in which
environmental sequence reads are assigned to known taxa based on similarity of compositional
biases. Here I report that these methods cannot be expected to work nearly as well in practice as
prior studies suggest, at least not when fully-sequenced genomes are used for training. This is a
consequence of two observations: supervised binning is accurate only when the query sequence
is very closely related to one of the training bins, but a large proportion of microbes in the
environment are phylogenetically distant from any fully-sequenced genome.

I conclude that accurate binning will require at least one of three approaches: 1) a vastly more
comprehensive set of training genomes (hard to come by due to culturing difficulties); 2) un-
supervised binning methods; or 3) self-supervised binning methods, in which the training se-
quences are taken from the very dataset that is to be binned.
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4.2 Introduction

Since the advent in 1995 of full-genome sequencing of microbes, approximately 1190 bacterial
and archaeal strains have been sequenced. The selection of strains for sequencing has been
largely driven by ease of cultivation and medical relevance, leading to biases in the sampling
of the microbial universe (Hugenholtz 2002). At present, only 24 of the ~100 known bacterial
divisions have even a single isolate representative.1 It is thus widely accepted that isolate se-
quencing efforts have barely scratched the surface of microbial diversity. The plummeting price
of sequencing is now spurring efforts to sample both more widely, as in the GEBA project (Wu
et al. 2009), and more deeply in a targeted manner with respect to a specific environment, as in
the Human Microbiome Project (Turnbaugh et al. 2007; Consortium et al. 2010).

In parallel, recent years have seen the development of a genomic approach to microbial ecol-
ogy, based on shotgun sequencing of environmental samples. The set of fully-sequenced iso-
late genomes provides an important reference for the interpretation of these metagenomic data.
Methods for solving various problems in metagenomic data analysis, such as taxonomic classi-
fication of sequence reads, analysis of community species composition based on marker genes,
and comparative assembly, are sensitive to the phylogenetic proximity between each environ-
mental sequence read and a fully-sequenced isolate (Kunin et al. 2008).

Here I concentrate on the “binning” problem, where the task is to classify short nucleotide se-
quences from the environment into known taxonomic groups. The most obvious procedure to
do this is simply to perform sequence similarity searches (e.g., using BLAST), and to classify
the query sequence to a taxon in which similar sequences are found. Many classification pro-
cedures have been designed around this idea (Mavromatis et al. 2007; Hanekamp et al. 2007;
Krause et al. 2008; Monzoorul et al. 2009; Essinger and Rosen 2010; Horton et al. 2010). A
general concern with this approach is that it can be difficult to know at what taxonomic level
it is appropriate to make an assignment. The best BLAST hit may be annotated to the strain
level, but may in fact be in a different family or even division from the query sequence due to
limited database coverage and database bias. The degree of conservation of different sequences
is of course highly variable, so the similarity score between a query sequence and a database hit
cannot in general be used to infer the phylogenetic distance. These issues can be addressed to
some extent by aggregating the annotations from a number of database hits and by considering
their e-value scores in concert; but the tradeoffs inherent in these decisions have not yet been
thoroughly explored.

An alternative approach is to classify sequences on the basis of statistical descriptions of their
composition, typically involving the frequency distribution of short words (“k-mers”) within
the sequence. These compositional signals can be exploited for taxonomic classification on the
basis of the surprising observation that microbial genomes each have a characteristic "genome
signature" that may be detectable even in fairly short reads (Jeffrey 1990; Karlin et al. 1998a;
Sandberg et al. 2001; Mavromatis et al. 2007) . One motivation for compositional binning is the
idea that signatures may be detectable for higher-level taxa, even at the phylum level, allowing

1http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.html, http://greengenes.lbl.gov/cgi-
bin/nph-browse.cgi
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at least a coarse classification of environmental sequences that are not closely related to known
organisms in the reference database (McHardy et al. 2007).

The biological basis of the phenomenon of genome signatures is not well understood. For in-
stance, it is not known how quickly signatures diverge after speciation; whether they diverge
continuously or in a punctuated manner; whether cases of convergence are influenced by envi-
ronmental factors (Foerstner et al. 2005; Perry and Beiko 2010) or are simply due to crowding
of the signature space (Mrázek 2009); how much consistency can be expected among the frag-
ments taken from a given genome with respect to fragment length; and so forth. It is thought
that the signatures arise out of differences in mutation and repair biases (Chen et al. 2004; Lind
and Andersson 2008), but they are also clearly entangled with GC content (which can change
fairly rapidly and thus carries little phylogenetic signal), amino acid usage biases, and codon
usage biases (Vetsigian and Goldenfeld 2009). The fact that horizontally transferred material
adopts the signature of its host genome over time (Lawrence and Ochman 1997) supports the
view that signatures are maintained by ongoing genome-wide processes.

Lacking a thorough understanding of the mechanisms that drive the evolution of oligonucleotide
distributions, we cannot design a classification procedure using them on theoretical grounds.
Rather, a wide variety of procedures have been proposed and empirically tested, employing
different statistical models of sequence composition, different metrics of distance between
sequences, different clustering procedures, and so forth. These methods are typically evalu-
ated by cross-validation, using simulated metagenomic datasets derived from fully sequenced
genomes; results from such studies have suggested that classification performance can be quite
good (Sandberg et al. 2001; McHardy et al. 2007; McHardy and Rigoutsos 2007; Mavromatis
et al. 2007; Zhou et al. 2008; Brady and Salzberg 2009). However, I am concerned that these
validations have inadvertently incorporated unrealistic assumptions, and thus that the reported
measures of accuracy are substantially higher than can be expected when classifying real envi-
ronmental datasets.

4.3 Results

4.3.1 Correct binning occurs only at very short phylogenetic distances

In this section I explore the relationship between compositional bias distances and phylogenetic
distances, with the goal of building intuition about why compositional binning works at all. I
will use the Euclidean distance between tetramer frequency vectors as a prototypical distance
metric throughout, because it is widely used and easy to understand (see Materials & Methods
4.5.3). As I discuss in section 4.3.1, the qualitative results of this section hold true for other
distance metrics as well.
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Compositional biases are consistent within genomes and distinct between genomes

In order for compositional biases to be useful for taxonomic classification, two conditions must
hold. First, biases must be consistent between different regions of a given genome. Second,
biases must be distinct between genomes.

Many simple random models predict the divergence of compositional bias between entire genomes
over time. If sites mutate independently, then the bias of a genome as a whole simply follows
brownian random walk through the course of evolution. Since the space of distinguishable
compositional biases is fairly large, different populations following random paths will naturally
diverge from one another. However, under such a model, we would expect two nonoverlapping
regions of a genome to diverge from each other over time as well. Thus, there is no reason to
believe a priori that the consistency condition holds.

Figure 4.1 illustrates that both conditions hold between Escherichia coli and each of Halobac-
terium salinarum and Wigglesworthia glossinidia. First consider the genome of E. coli alone,
shown in green. The compositional bias distances between sliding windows of 5 kb and the
genome as a whole are consistently near zero. The distances between sliding windows on the
two other genomes and the E. coli genome as a whole are consistently greater than the corre-
sponding distances within E. coli. That is, nearly all reads from H. salinarum are more distant
from E. coli than is any read from E. coli to itself. This illustrates that the distinctness condition
holds for this pair of genomes: given the task of classifying a read into one genome or the other
simply by distinguishing those with a signature like E. coli from those with a different signature,
only a small proportion of reads will have ambiguous assignment.

In Figure 4.2, the magenta histogram shows that the compositional bias distance between many
pairs of reads of 50 kb (panel A) or 1kb (panel B) randomly sampled from E. coli are also
consistently near zero. This demonstrates that nonoverlapping regions of the genome have not
diverged from one another in terms of their compositional bias; rather, some mechanism must
be acting to maintain a specific compositional bias over the entire length of the genome.

Of course, some pairs of genomes are more distinguishable than others. In addition to the
within-E. coli histogram, the figure shows histograms of the compositional distances between
reads randomly selected from various genomes and reads randomly selected from E. coli. Re-
gions where the histograms overlap correspond to compositional bias distances at which clas-
sification is ambiguous. When the histograms do not overlap, that indicates that compositional
bias distance is sufficient to correctly distinguish reads from the two genomes. For closely re-
lated strains, the histograms will overlap completely. In this example, 50-kb reads known to
originate from one of the five example species can easily be classified as belonging to E. coli or
not. As we would expect, shorter reads provide less discrimination between species. With 1-kb
reads, substantial overlap is seen between the histograms, with the exception of Wigglesworthia
glossinidia, which remains nearly perfectly distinguishable from E. coli. We might hope that
the ease of distingishing genomes increases with phylogenetic distance, but we will see below
that this is not the case.
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Figure 4.1: Using the genome signature of the entire E. coli genome as a target, compositional
bias distance from tiled 5kb windows of that genome to the target (green) are consistently less
than distances from tiled 5kb windows of other genomes to the target. The overall genome sig-
nature is of course the average of the 5kb windows, but (with a few short exceptions) it is not the
case that different regions of the E. coli genome have different signatures, since in that case the
green line would not be horizontal. The genome of Halobacterium salinarum (purple) contains
several large plasmids(Pfeiffer et al. 2008) , which here I have given position indexes preceding
the main chromosome. The plasmids have substantially different GC content from the main
chromosome, resulting in the evident distinction between two regions of different signature.
The Wigglesworthia glossinidia genome (brown) is very short, as is typical of endosymbionts,
and very different from E. coli in tetramer signature.
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A. 50kb fragments

B. 1kb fragments

Figure 4.2: Some pairs of genomes are more distinguishable than others.
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Absolute compositional bias distances do not correlate with phylogenetic distances

If species have distinctive compositional biases, and if that bias evolves relatively slowly with
respect to speciation, then we would expect closely related species to have similar compositional
biases. Certainly it must be the case that closely related strains of the same species have nearly
identical compositional biases, since they have nearly identical sequences; on the other hand
there are cases where different strains of the same "species" share fewer than half of their genes
(Welch et al. 2002), so their compositional biases may or may not agree on a whole-genome
scale. On the whole we would expect compositional bias distance to increase with phylogenetic
distance, at least for short distances up to some correlation length, beyond which all bets are off
because enough time has passed for the compositional bias to become unrecognizable.

Various authors have explored this idea, and have even gone so far as to build phylogenetic
trees on the basis of compositional bias distance (Pride et al. 2003; Qi et al. 2004a; Chapus
et al. 2005; Pride et al. 2006; Gao et al. 2007; Sims et al. 2009).

I investigated the relationship of compositional bias distance to phylogenetic distance by sam-
pling pairs of subsequences from the fully sequenced genomes available from NCBI, computing
compositional bias distances, and plotting these against the phylogenetic distance between the
genomes. A diagonal trend on such a scatterplot would indicate that phylogenetic distance can
be predicted from compositional bias distance.

A representative scatterplot is shown in Figure 4.3. In this example, “reads” of 50kb sampled
from the 1190 isolate genomes are compared with full-genome signatures. Because the signa-
tures of short reads are naturally more variable, the use of very long reads here represents a very
conservative scenario, where we expect the signature of the read to closely match the signature
of its source genome (see section 4.3.1). The distance measure is the Euclidean distance be-
tween tetramer frequency vectors, and the phylogenetic tree is the FastTree ribosomal tree (see
Materials & Methods 4.5.1).

As can been seen from the plot, there is no correlation between the compositional bias distance
and the phylogenetic distance, except at very short distances (i.e., a diagonal tail is visible in
the lower left corner). This suggests that compositional biases do indeed diverge through speci-
ation, but that the differences rapidly saturate, so that past a correlation length in the vicinity of
0.1 branch-length units (i.e., nucleotide substitutions per site), they carry no phylogenetic infor-
mation. Thus, compositional bias distances cannot in general be used to predict phylogenetic
distance or to build phylogenetic trees. The plot shows, however, that a very small compo-
sitional bias distance implies phylogenetic proximity (e.g., points within a compositional bias
distance of 0.1 are nearly always within 0.1 branch-length units). The converse is however less
clear; compositional bias distances can be large even when the phylogenetic distance is small.

Environmental sequences may be binned to very closely related reference genomes

Most binning methods to date have used a nearest-neighbor (1-NN) approach; thus binning
depends only on the distance to the best bin being shorter than the distances to all the others.
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Figure 4.3: A) A representative scatterplot of real phylogenetic distance vs. a compositional dis-
tance measure, comparing randomly sampled 50kb reads with full genomes. The sequence pairs
were sampled so as to produce a more or less uniform distribution of phylogenetic distances
from 0.0 to 0.4. B) Two example scatterplots of real phylogenetic distance vs. compositional
distance between a randomly chosen 50kb fragment and all genomes in the dataset. Panel A can
in a sense be thought of as the overlaying of thousands of such examples. This suggests that the
genome with the smallest compositional distance to a given read is in fact phylogenetically the
nearest as well; the fact that these distances differ from one read to the next explains why region
near the origin of panel A shows substantial decorrelation. That is: while the absolute composi-
tional distance between a read and a genome may not allow predicting phylogenetic proximity,
the relative distance (i.e., the choice of the nearest genome) is nonetheless informative.
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Beyond that, the rank order of the bins is irrelevant. Fortunately that’s exactly the situation
we have above: the best few bins should be correctly ranked, and all the others have greater
distances and are effectively randomly ranked.

Apparently different test reads are more or less similar to genome averages as a whole: that
is, although reads from a given genome are generally consistent, some reads are anomalous,
in that their signatures are quite divergent from the genome background. In these cases, the
compositionally nearest genome may not be the source genome at all, but some other genome–
perhaps one related to the source genome if the signature divergence is not too great, or perhaps
an essentially random one chosen on the basis of noise.

Figure 4.4 A shows the cumulative distribution of phylogenetic distances between 50kb query
sequences randomly sampled from all 1190 genomes and the genome with the most similar
signature (i.e., the prediction of a 1-NN classifier). When I permitted matching the source
genome itself (or a sister strain of the same species), producing a phylogenetic distance of zero,
the correct genome was identified for 85% of the query reads. But, even for such long reads,
the best match is more than 0.1 branch-length units distant from the source genome (i.e., in a
different family) about 4% of the time.

This is however an unrealistic indicator of how well a binning procedure will work when applied
to environmental sequences, because very few of the species in any environment are represented
in the set of isolate genomes. The simplest way to account for this fact is a “leave-one-out”
procedure (also known as n-fold cross-validation, where n is the number of data points). In a
supervised classification context, this is normally achieved by holding out one genome prior to
training, and testing using samples from this held-out genome. This procedure is then repeated
for each genome.

For all of the clustering procedures considered here, the training of each bin is independent of
the other bins, as is the computation of a distance from a test sample to a bin. Thus, we can train
all of the bins once, and achieve the leave-one-out effect in the testing phase simply by refusing
to classify a sample to the same bin from which it came—instead choosing the second-closest
bin in this case. Figure 4.4 shows that phylogenetic distances between the query seuence and
the best reference genome are substantially increased in this case, to the point that the correct
genus (i.e., branch length <= 0.05) is identified only 45% of the time. This plot is of course
completely dependent on the phylogenetic distribution of the available genomes; for instance,
when a genus has only one representative genome, then a query from that genome can never be
classified to the correct genus in a leave-one-out setting.

Signature variation within genomes impacts classification performance

I showed in section 4.3.1 that the compositional biases are generally consistent within a given
genome. Nonetheless, classification performance may suffer if a genome does not have a con-
sistent signature throughout, but instead contains multiple regions of distinct signature (which
may occur for various reasons, most obviously plasmids, viruses, and horizontal transfers), as
we saw in the case of Halobacterium salinarum (Figure 4.1). Computing the average signature
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Figure 4.4: (Blue) Cumulative histogram of phylogenetic distances from randomly sampled
50kb fragments to the most similar genome in the dataset, measured as the Euclidean distance
between tetramer frequency vectors. The source genome from which the 50kb read was sampled
is correctly identified 85% of the time. (Red) Cumulative histogram of phylogenetic distances
from randomly sampled 50kb fragments to the most similar genome in the dataset, excluding
the source of the fragment. (Green) Random expectation, i.e., the distribution of branch-length
distances between pairs of leaves selected randomly and uniformly.
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of the entire genome in these cases loses important information. For example, if the signatures
are in fact bimodal, then no sample will match the average very well. Conversely, when com-
paring short reads against each other, this situation would produce short distances when the
reads come from the same signature region, and long distances when they come from different
regions.

If a genome consists of multiple signature regions, then one might expect the most relevant
compositional bias distance for binning a short read to be the shortest distance between the
read and any one of the regions. To model this situation, I fragmented each genome into 50kb
regions, and defined a distance from a read to that genome as the minimum distance to any
subsequence (taking care to exclude any sequence overlapping the query, of course).

Indeed, we see in Figure 4.5 that about 4% of the sequences are classified nearer to their source
genome when fragmented targets are used than in figure 4.4, where the targets were whole-
genome averages. These are of course sequences from the very regions that were previously
found to be anomalous with respect to their genome context.

When I use 5kb reads for both the queries and the targets, the effect is even greater: even in
the leave-one-out scenario, using 5kb targets instead of whole-genome targets increases the
genus-level accuracy from 36% to 43% (Figure 4.6).

(Note that the leave-one-out experiment producing these “accuracy” values is a contrived ex-
ample that does not reflect performance on real datasets, as I discuss below and in Chapter
5. Nonetheless I believe that the relative increase in accuracy when using multiple targets per
genome is a legitimate point that carries over to other settings).

From these results I conclude that, although genome signatures are generally consistent within
genomes, enough variation remains that classification can be improved by considering each
genome to contain multiple characteristic signatures rather than just one. In the simplest case,
this involves computing signatures for tiled windows across each genome for use as targets
of a 1-NN classifier. I presume that the principle holds for other types of classifiers (k-NN,
SVM, etc.) as well, on the argument that taking the genome average evidently discards valuable
information.

The fact that this observation holds for leave-one-out evaluations demonstrates that distinctive
patterns in multiple genome regions survive speciation, because genus-level classification of a
read from one species is frequently improved by considering multiple regions in a sister species.
That is, it must be the case that, some of the time, homologous regions in the genomes of two
congeners are more similar to each other than to their respective genomes as a whole. We would
expect this result, for example, if a plasmid of distinctive composition were present in several
related species. More generally, it may be that local signature heterogeneities within the an-
cestor genome have not yet been overcome in the descendants, because signature divergence
after speciation did not occur quickly enough or consistently enough to obscure the preexisting
signal. It is important to keep this possibility in mind when performing unsupervised classifi-
cations as well, since the resulting clusters may represent related regions in multiple taxa rather
than separating reads primarily by taxon.
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Figure 4.5: 50kb fragment targets provide improved classification of 50kb reads vs. whole-
genome targets. A) Cumulative histogram of phylogenetic distances from randomly sampled
50kb fragments to the most similar non-overlapping 50kb fragment in the dataset, according to
the Euclidean distance between tetramer frequency vectors. In the leave-one-out experiments,
entire genomes were left out as previously. B) A representative scatterplot of real phylogenetic
distance vs. a compositional distance measure, comparing pairs of 50kb reads. The sequence
pairs were sampled so as to produce a more or less uniform distribution of phylogenetic dis-
tances fom 0.0 to 0.4.
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Figure 4.6: 5kb fragment targets provide improved classification of 5kb reads vs. whole-
genome targets. A) Cumulative histogram of phylogenetic distances from randomly sampled
5kb fragments to the most similar non-overlapping 5kb fragment in the dataset, according to
the Euclidean distance between tetramer frequency vectors. In the leave-one-out experiments,
entire genomes were left out as previously. B) A representative scatterplot of real phylogenetic
distance vs. a compositional distance measure, comparing pairs of 5kb reads. The sequence
pairs were sampled so as to produce a more or less uniform distribution of phylogenetic dis-
tances fom 0.0 to 0.4.
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Generalization to other distance metrics

I performed the experiments in this chapter hundreds of times, varying all manner of parameters
including read length, word length, distance metric, and so forth. To guard against possible
anomalies in the phylogenetic tree, I performed the tests using both the FastTree ribosomal tree
(see Materials & Methods 4.5.1) and a tree based on conserved protein sequences (Ciccarelli
et al. 2006); I also used 16S percent difference values as a direct estimate of phylogenetic
distance without reference to a tree. In all cases the qualitative results are the same: there is
no correlation between any computed distance based on compositional biases and phylogenetic
distance, except at very short distances. A few representative examples using different distance
metrics are shown in Figure 4.7. Because I am ultimately concerned with binning performance
but not with the strength of these correlations per se, I leave the quantative comparison of
distance metrics to a future paper (Soergel, 2011, in prep.)

I conclude that compositional biases diverge fairly rapidly, so that they become entirely uncor-
related after 0.05-0.1 branch-length units on the 16S tree, corresponding very roughly to the
genus or family level. Thus, binning should not be performed to higher taxonomic levels when
no genus (or at least family) representative is present in the training set (i.e., when an attempt
to bin at the genus or family level fails).

On the other hand, the signatures rarely converge, so the leaves of the tree have distinct sig-
natures. Because some degree of signature consistency within each genome is maintained,
whole-genome signatures may be used to classify sequences at the leaves; but more accurate
classifications are obtained when the assumption of consistency is dropped and each target
genome is represented as a cloud of signatures.

4.3.2 Fully-sequenced genomes dramatically undersample natural micro-
bial communities

I demonstrated in the previous section that compositional biases are informative about phyloge-
netic relationships only at short distances, suggesting that a supervised classification procedure
will work only if the test samples are phylogenetically near the training bins. The question
arises, then, how well different environments are represented by the set of isolate full-genome
sequences.

Here I quantify how well isolate genome sequencing to date covers microbiota from eight di-
verse environments. I take an approach based purely on branch-length distances along a tree re-
lating 16S ribosomal sequences, without considering traditional taxonomic ranks such as “fam-
ily” and “genus”, to ask the question: given a randomly sampled microbial cell from some
environment, what phylogenetic proximity to a fully-sequenced isolate genome can we expect?
(Figure 4.8).

I found substantial variation among different environments in how well each has been described
by isolate genome sequencing to date. I computed the branch-length distance on the 16S phy-
logeny between each environmental sequence and its nearest fully-sequenced isolate genome;
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Figure 4.7: Representative scatterplots of real phylogenetic distance vs. several compositional
distance measures, comparing 50kb reads with full genomes.



79

Phylogenetic distance from an 
environmental 16S sequence 
to the nearest full genome

Fully-sequenced isolate genomes,
mapped to inferred 16S tree

Known 16S ribosomal sequences, 
inferred tree

All extant 16S sequences, 
real historical tree (unknown)

Figure 4.8: Undersampling of the tree of life by isolate full-genome sequences. In this cartoon,
the 16S rRNA tree (blue) provides the best available sampling of the real underlying 16S tree
(gray), but the tree relating isolate genomes (red) is extremely limited by comparison. The
degree of undersampling can be measured by considering the distribution of phylogenetic dis-
tances between environmental sequences that can be placed on the 16S tree (e.g., at the leaf
circled in black) and their nearest fully-sequenced isolates.
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Figure 4.9: The proportion of environmental sequences that are within a given distance of a
fully-sequenced isolate genome. This can be thought of as a description of beta (between-
community) diversity, related to the lineage-vs-time plot describing alpha (within-community)
diversity (Martin, 2002), in that it plots the proportion of lineages in one tree (the query com-
munity) that are represented in the other (the reference database) vs. tree depth. We would
naturally expect that essentially all environmental strains differ from laboratory strains at the
fine-grained level (Acinas et al., 2004) (i.e., that the lines begin at the origin); what this plot
shows is that much larger clades and even entire divisions have no sequenced isolates, and that
different environments contain these unsequenced taxa in different proportions.
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Figure 4.9 shows the cumulative distributions of these distances for eight near-full-length 16S
datasets from a variety of environments.

The sample of human skin and mattress dust is unusual in that over 60% of the sequences are
from species for which there is an isolate representative. This may be because the isolates are
highly enriched in species found on the skin compared to other environments. Even so, this
sample seems so anomalous that I would not be surprised to learn of contamination or some
unusual bias in the sample preparation; but I did not investigate this further.

In the other samples, between 0% and 22% of sequences are in the same species as a fully-
sequenced genome (branch length < 0.03); between 0% and 36% are in a represented genus
(branch length < 0.05); and between 1% and 55% are in a represented family (branch length <
0.10).

The results of section 4.3.1 show that taxonomic binning of shotgun reads based on compo-
sitional bias has any hope of success only when the 16S branch-length distance between the
source organism and the nearest isolate genome is less than 0.05 or at best 0.1; but here I found
that, in many environments, at most 55% and as few as 1% of the sequences qualify for bin-
ning on this basis; the remaining 45%-99% should therefore be classified “unknown”. Binning
methods to date have been evaluated using a leave-one-out procedure, which does not reflect the
phylogenetic diversity found in real environments, even when higher-level clades are left out.

Neglecting the suspicious human skin sample, no more than about a third of the sequences in
even the best-covered environments are from genera with a sequenced representative. Thus we
cannot hope to make genus-level predictions for more than about one third of the sequences,
even given a perfect classification procedure. In this light claims of 75% or greater accuracy in
genus-level classifications (Sandberg et al. 2001; McHardy et al. 2007; McHardy and Rigoutsos
2007; Mavromatis et al. 2007; Zhou et al. 2008; Brady and Salzberg 2009) make no sense.

Slow improvement of coverage over time

As more microbial species have been sequenced over time (Figure 4.10A), the nearest-isolate
distances have naturally decreased. Figure 4.10B shows the proportion of 16S sequences from
various environments for which a genus representative had been sequenced (defined as a branch-
length distance <= 0.05 between a query and a representative), over time (terminating in October
2010 at the same values that can be read for a branch length of 0.05 in Figure 4.9).

With the exception of the human gut sample, the coverage of environments by isolate genomes
has remained strikingly stagnant since 2007, despite the doubling in the number of sequenced
genera during that time.

The number of sequenced genomes is increasing exponentially, but the number of taxa with
respect to tree depth is exponential as well. Thus we would expect, if species were selected for
sequencing at random, that the nearest-isolate distances would improve more or less linearly. In
fact, of course, the strong bias in organisms chosen for sequencing means that some taxa will
be saturated while others remain neglected. The GEBA project aims to correct for this bias by
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choosing organisms for sequencing based on their phylogenetic diversity(Wu et al. 2009), and
some of the genomes thus chosen are included in the October 2010 dataset, but the impact of
this new approach is not yet evident in my results.

In the case of the human gut, a major improvement in coverage resulted from genomes se-
quenced in 2009. I expect that the ongoing targeted sequencing of gut bacteria as part of the
HMP (Turnbaugh et al. 2007; Consortium et al. 2010) will produce similar jumps in future
years. The project remains at an early stage, however, and the contribution of HMP genomes
during 2010 (to date) did not produce a substantial improvement in genus coverage.

4.4 Discussion

The pace of microbial genome sequencing continues to increase rapidly—so much so that the
number of available genomes could easily double between the time of this writing and the date
of publication. The present results are based on the full-genome set as of October 2010; more
genomes, particularly from more diverse isolates, may improve the situation considerably in the
future. At the same time, it is sobering that the improvement in nearest-genome distances has
been fairly slow in recent years despite the large number of genomes that have been sequenced.
This can be explained first by a simple diminishing-returns argument: given the rapid increase
in the number of taxa with respect to tree depth as one approaches the leaves of the tree, ever
more genomes are required to achieve the same benefit in terms of branch length. Second, these
results may be an indication that the biases in the selection of strains described by Hugenholtz
(2002) are still with us: most obviously, only those strains that can be cultured can be fully
sequenced, and the pace of novel strain isolations is not increasing very rapidly to the best of
my knowledge (especially not for large clades—including even divisions—without any cultured
representative.)

It is frequently claimed that, in general, fewer than 1% of microbial cells found in the envi-
ronment can be cultured (Staley and Konopka 1985; Amann et al. 1995). This belief is at least
somewhat called into question by my finding that up to 22% of 16S sequences in the ocean have
better than 97% sequence identity with an rRNA from strains that are not only isolated but even
fully sequenced. For several other environments, including soil and human gut, the proportion
of sequences in the same species as a fully-sequenced isolate was in the range of 4-12%. On the
other hand, almost none of the sequences in the termite gut and hypersaline mat samples were
even in the same genus as any fully-sequenced genome. The apparent inconsistency between
these findings and the 1% claim may be explained by the fact that some strains within a species
may be culturable while others are not. Also, the 16S sequence datasets may not sample the
cells from an environment uniformly, both due to measurement issues such as PCR bias and
due to various forms of filtering and dereplication which, if applied, would alter the apparent
relative abundances of types. Nonetheless, it appears overall that coverage of different environ-
ments by fully-sequenced genomes (and, presumably, by cultured isolates in general) is highly
variable, to the point that the oft-cited 1% figure is not meaningful.
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Figure 4.10: The proportion of sequenced genera in many environments is stagnant, despite the
rapidly increasing number of total sequenced genera. A) number of genomes and genera se-
quenced, by year (1995-2010) B) Proportion of sequences from various environmental samples
with a fully sequenced congener, by year (1995-2010).
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Consequences for evaluating metagenomic analysis methods. Because the available isolate
genomes are extremely unevenly distributed over the tree of life, the phylogenetic distance
from any isolate genome to its nearest neighbor is likely to be very small. Thus, testing a
binning method using the leave-one-out method produces accuracy estimates that are far higher
than is realistic for supervised binning of environmental sequences trained on isolate genomes.
Ironically, the use of leave-one-out evaluations may have been somewhat more realistic in the
past, when the available genomes were fewer and more distant from one another on the tree.

Because binning works only at short evolutionary distances, I find that it is not sensible to try
to bin sequences to taxonomic ranks above genus or perhaps family. In all likelihood, reports
that such binning can be successful are largely driven by the leave-one-out evaluation approach
in combination with the highly uneven distribution of fully-sequenced genomes on the tree of
life. In those evaluations, it is artifically easy to bin a sequence at the order or phylum level,
because the reference genomes in fact do not represent higher-level taxa as a whole, but rather
only a biased subset of the species within the taxon. Because the query sequences are subject
to the same biases, they are likely to be much more closely related to a reference genome than
can be expected in a natural environment.

This is the reason why some authors recommend training bins using fragments from the en-
vironmental dataset under consideration that contain marker genes (McHardy and Rigoutsos
2007; McHardy et al. 2007; Chan et al. 2008a). This produces training bins such that (ideally)
the phylogenetic distance from any fragment to a bin is very low, as in the same-genome and
leave-one-out cases.

Binning environmental sequences against fully-sequenced genomes may nonetheless be useful
to identify those sequences that are likely to be closely related to a known target. In this case,
we should expect, depending on the environment, that a relatively small proportion of the sam-
ple can be binned at all; the remainder should be labelled “unknown”. Binning procedures must
therefore be calibrated with a threshold of compositional distance beyond which no classifica-
tion is made. This threshold should be empirically chosen, based on more realistic simulations
(Chapter 5), at a level that makes reasonable tradeoff between the number of sequences that are
classified at all and the accuracy of those classifications.

Finally, if phylogenetic proximity is required for compositional binning, it is not clear whether
or why compositional binning provides any benefit over alignment-based methods, which are
also naturally most accurate at close distances. Past evaluations of alignment-based binning
methods have also been done by a leave-one-out procedure and so are subject to the same
difficulties discussed above; these experiments should also be repeated in a more realistic setting
in order to obtain a valid comparison. In any case, it may be that compositional methods can
make classifications that alignment-based methods miss, because of the substantial variation in
gene content even among closely related genomes: a reference genome may simply contain no
sequence homologous to a query sequence from a sister species or even strain.
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4.5 Materials and Methods

4.5.1 Placement of isolate genomes on a large 16S phylogenetic tree

1190 complete isolate genomes were downloaded from NCBI on October 14, 2010. My anal-
yses required a measure of phylogenetic distance among these genomes and between these
genomes and environmental species represented by 16S sequences. While measures of distance
between whole genomes have been developed based on highly conserved protein-coding genes
(Ciccarelli et al. 2006), I instead computed distances purely on the basis of a 16S tree. To build
the reference tree, I downloaded the GreenGenes database of ~500,000 aligned 16S rRNA se-
quences on August 25, 2010. I applied the Lane mask (Lane 1991; Desantis et al. 2006b) to
these sequences and then built a tree from them using FastTree 2.1.3MP (Price et al. 2009).
Branch length distances between pairs of sequences on the resulting tree are denominated in
units of nucleotide substitutions per unmasked site along the full length of the rRNA. Near the
leaves of the tree, branch length distances between pairs of leaves roughly equal the percent
difference between the sequences (i.e., DNADIST values), as would be expected (Figure 4.11).
Tree distances may be shorter than percent difference distances because the tree is based on
masked sequence while the DNADIST values are not. Conversely, the branch length distances
are often greater than the sequence percent difference, especially at greater distances, presum-
ably because the tree-building process is able to resolve reversions. Evidently, substantially
more reversions are thus identified than would be inferred using the Jukes-Cantor correction
(which is incorporated in the DNADIST measure); this makes sense because most of the muta-
tions are concentrated in the most variable regions of the sequence that remain after masking.
As a result, the tree building procedure infers a greater number of mutations than are evident
from the pairwise percent identity score alone.

It should be noted that the 16S tree is not strictly a species tree, partly due to the ongoing
controversies regarding the definition of microbial species, and more obviously because a single
genome may contain multiple copies of the 16S sequences that can differ by as much as a few
percent. Conversely, the tree does not always resolve taxa corresponding to conventional species
names. It is not clear to what extent these issues may be due to misannotations in GreenGenes,
failure of the tree building approach, or a legitimate inability to cleanly distinguish the species
on the basis of their 16S sequences. I observed the same phenomena on the Hugenholtz ARB
tree (Hugenholtz 2002; Desantis et al. 2006b), so they are not purely artifacts of the tree building
procedure.

With those caveats, I nonetheless wished to place the fully sequenced genomes on the tree,
to obtain rough estimates of phylogenetic distances among them and from environmental se-
quences. To do this, I first extracted all 16S ribosomal sequences from the genomes using
RNAMMER (Lagesen et al. 2007). I then used USEARCH (Edgar 2010) to identify nearly
identical sequences in GreenGenes. For this task, I first clustered GreenGenes using UCLUST
(Edgar 2010) with a 99% identity threshold; the resulting ~143,000 representative sequences
served as the reference database. Of the 1190 genomes, most matched exactly one reference
cluster with >99% identity (even when multiple rRNA copies were present). A few hit more
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Figure 4.11: The FastTree phylogeny of full-length 16S sequences (based on Lane-masked
pairwise DNADIST values) correlates well with the unmasked pairwise DNADIST values. This
occurs due to two opposing effects: masking hypervariable regions tends to reduce the percent
difference between two sequences, but building a tree in this case tends to produce branch
lengths greater than the pairwise distances, because the tree resolves reversions.
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than one cluster, indicating that at least two copies were present that differed by more than 1%
from each other. Conversely, in many cases, multiple genomes have been sequenced of the
same strain or very closely related strains, so these map to the same GreenGenes cluster. In
total, 1139 of the genomes were mapped to 808 representative GreenGenes sequences. All of
these 808 sequences were used downstream to represent the isolate genomes; thus, in the case
of multiple representative matches for a single genome, the phylogenetic distance from a query
sequence to the nearest one was chosen to represent the distance to the genome as a whole. The
51 genomes that did not match a GreenGenes cluster were not considered in the downstream
analyses.

4.5.2 Computation of phylogenetic distances between sequences

I recognize that the microbial phylogeny is by no means settled, and that there are numerous
curators with differing opinions (Desantis et al. 2006b). Here I assume only that the topol-
ogy produced by FastTree provides some approximation to the real historical tree, so that the
branch lengths on this tree are a meaningful (if heuristic) measure of phylogenetic divergence. I
computed branch length distances between nodes on the tree using my Phyloutils package (So-
ergel, 2009). For each left-out genome or environmental sequence, the branch-length distance
between its leaf and the leaves associated with the isolate genomes was computed, and the
minimum selected. Cumulative distributions of the resulting “nearest-isolate distances” were
prepared using my Verdant software (Chapter 6).

4.5.3 Compositional bias distances among genomes and genome fragments

I extracted sequence regions of various lengths from the fully-sequenced genomes, both by
tiling the genomes and by sampling randomly within them, as indicated in the text. There are
very many possible distance metrics between sequences based on compositional bias; here, for
the sake of example, I used the Euclidean distance between tetramer frequency distributions.
To compute this, I counted how many times each possible tetramer appeared in each sequence
(counting overlapping tetramers as if they were independent), and divided by the total number
of tetramers (n−3, where n is the sequence length). I made no correction for edge effects at the
start and end of each sequence. The “distance” between two sequences was then computed as√√√√255

∑
i=0

(ai−bi)2

where a and b are the frequency distributions found in the two sequences being compared and i
indexes the 256 possible 4-nucleotide words.

I am not recommending this distance metric over many other alternatives; its use here is purely
a pedagogical device, in that it allows us to demonstrate issues that are common to all compo-
sitional distance metrics.
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Two additional distance metrics are shown for the sake of comparison in Figure 4.7. The “Ranks
Manhattan” distance is computed as follows (Reva and Tümmler 2004). For each sequence, all
possible words (i.e., 256 4-mers or 4096 6-mers) are ranked by frequency. The ranks thereby
obtained are stored, indexed by word: e.g., if the most frequent 4-mer in sequence x is “accg”,
then r(a)accg = 1. Words of the same frequency are all assigned the same “rank”, computed as
the average of their original ranks (which were naturally arbitrary with respect to one another).
The absolute differences between the ranks for each word are then summed (i.e., the Manhattan
distance is then taken between the two rank vectors):

255

∑
i=0
|r(a)i− r(b)i|

Finally the Markov Log Probability distance is obtained by building a Markov model from one
sequence and computing the probability of the other sequence under that model. This measure is
asymmetric; I consider the target sequence (i.e., the full genome to which we wish to classify)
to provide the model, and compute the probability of the query sequence (i.e., the simulated
read). The probability of the sequence is the product of the probabilities of each character
within it; these in turn depend on the sequence context. For instance, when using a 4-mer
model, the probability of a character is taken to be conditional on the prior three characters.
Because the resulting probabilities are extremely small, the computation is done in log space.
The log values are increasingly negative as the sequence becomes less probable; to interpret
the result as a distance, I simply take the negative. Finally I normalize this value to account
for sequence length: in probability space, this normalization would be acheived by taking the
geometric mean of the per-character probabilities; in log space, then, I simply divide by the
sequence length.

4.5.4 Environmental datasets and taxonomic classification

Sets of 16S sequences from eight diverse environments were extracted from GreenGenes as
described in section 2.5.1.

4.5.5 Proportion of environmental sequences in the same genus as a fully-
sequenced genome, by year

The year of sequencing of each genome was obtained from NCBI 2; this data was used to
assemble the complete set of genomes available at the end of each year from 1995 through
2009, and in October 2010. The distribution of nearest-isolate distances from the environmental
datasets to the genomes available at each time point was computed as described in section 4.5.2,
and the proportion obtained.

2http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi
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Chapter 5

A realistic and consistent methodology for
comparison of metagenomic binning
methods.

5.1 Abstract

A wide variety of "binning" methods have been proposed to perform taxonomic classification
of environmental shotgun sequence reads on the basis of sequence compositional biases, but
these have not been comprehensively compared to date. Indeed, since in general each method
has been evaluated under different conditions and according to different criteria, it has not been
meaningful to compare reported performance metrics such as sensitivity and specificity between
papers in the literature. Thus it is a foundational problem in the field to establish a consistent
evaluation methodology and to apply it to the whole range of binning methods, so as to make an
informed decision about the best method to apply in a given context (perhaps depending both
on features of the community and on the biological questions being asked).

The design of an informative evaluation methodology turns out to be surprisingly difficult for
two reasons. First, there are very few real data sets that are well enough understood to form the
basis of a benchmark. Evaluations are typically performed on simulated data for this reason,
but it is not at all clear in turn how to simulate data with realistic properties. In particular,
evaluations to date have not adequately considered the phylogenetic distance between query
sequences and the training bins, with the consequence that classification accuracy is nearly
always overestimated, even when the “leave-one-out” approach is used. I correct this problem
by showing how to simulate training and test data so as to produce results mirroring those that
can be expected from natural environments.

Second, it is not obvious which metric should be optimized. For instance, measures commonly
used to describe multiclass classifiers, such as class-normalized sensitivity and specificity, as-
sume that the class labels are meaningfully chosen, mutually exclusive, and equally important.
In the case of phylogenetic classification, the potential labels are hierarchically organized, and
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may have dramatically different weights associated with them (whether based on abundance,
diversity, or importance by some other measure).

Here I propose the “bep95” measure for the quality of a phylogenetic classification, which
is simply the phylogenetic distance (measured on a reference 16S tree) within which 95% of
the classifications are correct. The measure incorporates the tradeoff between accuracy and
precision: division-level classifications will usually be more accurate than species-level classi-
fications, but are clearly less informative.

In combination, I propose an evaluation procedure which may be applied uniformly to various
binning methods to provide a fair comparison, with results that are meaningful to biologists
analyzing real data sets. The method may be applied to supervised, self-supervised, and semi-
supervised methods. While fully unsupervised methods cannot be evaluated directly, choices
prior to the clustering step (i.e. the choices of statistical model, smoothing, and distance metric)
may be optimized in a supervised setting, and then applied in the unsupervised setting.

5.2 Results

In order to test the accuracy of the wide variety of binning methods described in chapter ??,
I wish to use a typical strategy of training the classifiers on some data set with known labels
and then testing them on another set with known (but hidden) labels, taking care to avoid unfair
biases (as would arise, for instance, if the test and training sets were not disjoint). Such a
procedure requires a number of choices, which here I will consider in turn. First, what are the
classification labels that we wish to predict? Second, how are test and training data separated
from one another? Third, how are training points sampled from the underlying training data
set, and are the individual samples aggregated into bins that will be used as the classification
targets? Fourth, how are test points sampled from the underlying test data set? Finally, how are
predicted and actual labels compared with one another?

5.2.1 Choice of classification labels at different levels of the taxonomic
hierarchy

To my knowledge, all evaluations of metagenomic classification procedures to date make a
binary distinction between “correct” and “wrong” predictions, in order to compute standard
measures such as accuracy (i.e., the proportion of correct predictions), sensitivity, and speci-
ficity. These do not take phylogenetic distance into account. If the set of target bins includes
two closely related species or strains, a read from one that is assigned to the other is counted
as “wrong”, producing just as large a negative impact on the resulting accuracy measure as if it
had been assigned to the wrong kingdom.

Consequently, the resulting accuracy measures are highly sensitive to the number and phylo-
genetic resolution of the classification labels. Consider a hypothetical procedure that performs
perfect binning at the species level, but which cannot distinguish strains. If one target bin is
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learned for each species (i.e., from a single isolate genome), then the performance is excellent.
But if the genomes of ten isolate strains are available for each species (a circumstance that is
already true of several species such as Escherichia coli, Staphylococcus aureus, and Prochloro-
coccus marinus, and which will rapidly become more common), and if each available genome
carries a distinct label, then nine times out of ten the procedure will choose the wrong strain by
chance—so the “accuracy” will plummet to 10%.

One way of addressing this situation is to perform the classification at a higher level of the tree.
In the typical evaluations, bins are trained and tested separately at each taxonomic rank from
genus through division. Usually the result is that classification to higher ranks is more accurate
(i.e., previous studies report that it is easier to choose the right division than the right genus
(Sandberg et al. 2001; McHardy et al. 2007; McHardy and Rigoutsos 2007; Mavromatis et al.
2007; Zhou et al. 2008; Brady and Salzberg 2009)). However, Chapter 4 shows that composi-
tional binning works best when the test sequences are phylogenetically very near training bins,
and it is well known (and I quantify below) that the the set of available isolate genomes is highly
biased. In combination, these facts suggests that apparent good classification performance at
high levels of the tree may be at least partly an artifact of the specific choices of test and training
sets that were used. In particular, it will be easier to choose the correct division if both the test
and the training samples from that division do not represent its full diversity but instead are
largely drawn from a few families.

It is also worth remembering that the tree relating the isolate genomes is not well established.
Usually taxonomic labels are chosen at specific ranks (e.g. genus, family, etc.) according to a
curated taxonomy, such as those provided by the RDP or GreenGenes. An alternate approach
would be to choose internal nodes on a phylogenetic tree for use as labels. This would allow
choosing the tree level more continuously rather then from only a few discrete options, and
would lend more confidence that each label has more or less the same phylogenetic scope, in
contrast to the traditional taxonomic names (which, for historical reasons, may name taxa of
widely differing internal diversity at the same rank (Cohan 2002; Gevers et al. 2005; Konstan-
tinidis and Tiedje 2005, 2007)). On the other hand, the accuracy of reconstructed phylogenies
with respect to the true historical tree remains quite uncertain.

In short, accuracy scores from binning evaluations are meaningless unless one also knows which
set of classification labels was used, as well as the distribution of phylogenetic distances be-
tween test samples and training bins. Thus, such scores cannot be meaningfully compared
between evaluations that employed different training and test sets.

5.2.2 Separation of isolate genomes into test and training sets so as to
produce realistic performance estimates

Binning methods are typically trained on fully-sequenced isolate genomes. With the exception
of the Acid Mine Drainage studies (Tyson et al. 2004; Denef et al. 2010b), there are no environ-
mental shotgun datasets for which the taxonomic assignment of each sequence read is certain.
Since real datasets can therefore not be used as test sets, simulated datasets are produced for
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testing by sampling sequence reads from fully-sequenced isolates. The question arises, then,
how best to perform this sampling so as to estimate the performance of the binning methods
that can be expected on real data.

Leave-one-out cross-validation

A common strategy is the “leave-one-out” method (aka n-fold cross-validation), in which bins
are trained using all of the isolate genomes but one, and testing is done using reads sampled
from the held-out genome. The process is then repeated, holding out different genomes in turn.

The leave-one-out method is overly optimistic. I showed in Chapter 4 that compositional
distance measures correlate with phylogenetic distance only when the two sequences in question
come from very closely related organisms; if the computed distance is greater than some (fairly
low) threshold, then all bets are off regarding the phylogenetic proximity. Thus, I expect that the
accuracy of a binning procedure will be extremely sensitive to the distribution of phylogenetic
distances between test samples and training bins. For instance, if all of the test samples come
from the same species as were used for training, then we can expect to do very well; and if the
test samples are phylogenetically distant from the training bins, then the classification results
will be largely random.

For this reason I am concerned that the leave-one-out strategy may give unrealistic results, de-
pending on the taxonomic rank at which test samples are left out. If one genome is left out,
for instance, but another strain of the same species is available, then the binning performance
for that purportedly held-out genome will be excellent. Previous studies have generally been
careful to leave out all strains of the species being tested, but have not done the leaving-out
at higher taxonomic ranks (e.g., at the genus level). Because of the dramatic bias in which
taxa have isolate genomes available, the result is that, regardless of which genome is held out,
there is usually a genome available for a closely related species—at least, more closely related
than would be expected by chance. Consequently, evaluations based on leaving out individ-
ual species are likely to be overly optimistic about the accuracy that a binning procedure may
achieve.

Varying the leave-one-out level. When a leave-one-out evaluation is performed, a taxonomic
level must be selected at which the leaving-out occurs that is lower than the classification level
(otherwise no correct classification could be achieved). Usually this is done at the species level
regardless of the classification level, e.g. to see whether the correct division can be predicted
when there is no species match. However, Chapter 4 suggests that we should also be concerned
about whether the correct division can be predicted when the test sample comes from an or-
der or class that is not represented in the training set. Varying the leave-one-out level would
thus provide a means of testing the correlation length of compositional biases along the tree,
for instance to determine whether samples from different families within a given order share
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identifiable signature patterns. However, it seems clear from Chapter 4 that this is not the case,
so I did not pursue this question further.

Choosing the leave-one-out level can be thought of as setting a threshold phylogenetic distance
between a test sample and a training bin, below which I do not make a classification on the
grounds that such proximity is likely an artifact of database bias. However, setting the level
too high in the tree–in particular, higher than the correlation length of compositional biases–
amounts to an assumption that no environmental sequences resemble isolate genomes at all,
with the result that no classifications can be made.

Cross-validation with random subsamples

In fact, the real distribution of phylogenetic distances between environmental sequences and
isolate genomes varies continuously, so no one discrete cutoff is realistic. I therefore account for
this concern differently, by randomly selecting some number of species to hold out. In general,
the greater the number of held-out species, the greater the phylogenetic distances between the
test samples and the nearest training bin, because the remaining training genomes are ever
more sparse on the tree. Thus, by choosing this number appropriately, it is possible to obtain a
distance distribution for use in testing that resembles the distance distribution expected in a real
environment, and thereby overcomes the overoptimism of the leave-one-out approach.

I do in addition recommend leaving-out at the level of individual strains (i.e., merging genomes
at a phylogenetic distance of 0.0), in order to avoid testing a sample against its source genome
or against a technical replicate of the same genome.

Starting with the set of fully-sequenced isolate genomes, I held out test sets of different sizes
and measured the branch-length distance on the 16S tree between each held-out genome and
the nearest remaining training genome, excluding strain-level matches. Figure 5.1 shows the
distributions of such distances obtained by aggregating 100 replicates for each test-set size.

In Figure 5.2, selected curves from this simulation are overlaid on distance distributions ex-
pected from real environment types, as previously described (Section 4.3.2). The purpose of
this plot was to establish an analogy “808 : real environments :: x : (808 - x)” regarding the
relationship between the training and test sets. That is, given that real environments are to be
classified using all 808 available training bins, how should we partition those same 808 species
into training and test sets for evaluation? The hypersaline mat and termite gut samples have
essentially no fully-sequenced congeners; on the basis of chapter 4, then, classification of these
samples is hopeless. The dust and skin sample is anomalously even easier to classify than a
leave-one-out evaluation would suggest. For the remaining samples, the overlaid curves show
that simulations using training sets of 25-200 species produce nearest-isolate distributions that
are very roughly comparable to the distributions from real environments. In order to simulate
an environmental dataset from isolate genomes in such a way that the nearest-isolate distance
is realistic, then, we should choose between 25 and 200 genomes from the isolate set to act as
training bins, and then test using the remainder.
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Figure 5.1: Distributions of phylogenetic distances between query and target species in leave-
n-out simulations, for many values of n (averaged over 100 replicates each). Starting from 808
taxa, a leave-one-out experiment has 807 targets, and thus produces small distances; naturally,
choosing fewer targets (e.g., 100 targets == leave-708-out) produces greater distances.
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Figure 5.2: The distribution of phylogenetic distances between environmental query sequences
and reference sequences can be simulated by choosing different numbers of target species. Cu-
mulative distributions of phylogenetic distances between real environmental samples and isolate
genomes are shown, overlaid with four simulated curves selected from figure 5.1. A leave-one-
out experiment (red) effectively assumes that environmental sequences are more closely related
to fully-sequenced isolates than is realistic in most environments. Instead, the distributions
observed in many of the environmental samples can be roughly simulated by choosing only 25-
200 target species to represent the reference database, and by then extracting simulated query
sequences from the remaining 608-783 species.
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One might raise the objection that we cannot possibly achieve accurate binning at the genus
level with only 25 target bins; indeed the choice of 25 targets will surely neglect entire divisions.
This is exactly the point: figure 5.2 shows that, when classifying real environments using all
808 training bins, nearly all genus-level taxa and even some divisions present in the environment
will not be represented in the training set; it is this mismatch between the test and training sets
that I wish to simulate.

5.2.3 Aggregating and sampling the training data

Once the test and training genomes have been partitioned, the next step is to use the training
data to learn models of sequence composition to act as targets in the classification procedure; I
refer to these as “training bins”. Most evaluations to date have employed one training bin per
classification label. For instance, when classifying samples into divisions, all training samples
from each division are used to train a single model of sequence composition for that division.
If the nature of this aggregation is effectively to average the genome signatures of the training
samples (i.e., by representing the bin as the centroid of the samples), then this averaging is
likely to eliminate any phylogenetic signal that was present, by increasing the compositional
bias distances from individual samples to the centroid past the noise threshold (Chapter 4).

Varying the training and classification levels independently. Thus, an alternate approach
would be to perform the classification initially using fine-grained bins (e.g., at the species or
genus level), but to assign only the corresponding course-grained labels (e.g. at the division
level) to the test samples. The results of Chapter 4suggest that using multiple target bins per
classification label in this way can produce substantially more accurate predictions. The benefit
is likely to be smaller when the process of aggregating training samples into a bin in some way
remembers their internal distribution, as in the case of the SVM classifier.

The training bins may be even finer-grained than individual genomes, which would be useful
if the genomes are subdivided into regions of potentially different signature. Carried to the
extreme, the use of fine-grained training bins produces the 1-nearest-neighbor classifier, where
effectively every read produces a distinct training bin. I found in Section 4.3.1 that doing this
is likely to improve binning accuracy on the whole. However, we have also seen that randomly
selected pairs of reads may have similar composition despite being phylogenetically distant.
This noise may be ameliorated through the use of a k-nearest-neighbor classifier, which consid-
ers many compositionally nearby reads and can thereby overrule the few anomalous ones. The
same effect can be achieved with an SVM classifier, where anomalous reads can be overruled
during training through the use of a “soft margin” (Noble 2006).

Balancing training classes. One might be concerned that the phylogenetic bias in the set
of isolate genomes will result in a biased set of training bins, thereby imposing an unrealistic
prior on the classifier. One approach to correcting this bias is to factor it out as part of the
classification procedure, as in the case of the naïve Bayesian classifier. A second approach,
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which I take for the sake of consistent evaluation across classifier types, is simply to ensure up
front that each bin is trained on the same number of samples.

The goal of both approaches is to assume a uniform prior on the training bins. Of course, a
prior that is uniform with respect to genus labels will be highly nonuniform with respect to
division labels, because some divisions contain many genera represented by isolate genomes,
while others contain few or none.

How much training sequence is enough? In light of the above issues, my typical procedure
is to choose the phylogenetic level of training bins (e.g., the species level), then to aggregate
all training sequence that might contribute to each bin (e.g., the genomes of multiple strains
in the same species), and finally to sample a consistent number of training reads from each
sequence pool. Because of the consistency of compositional biases within each genome, it is
not necessary to train a species-level bin using all of the available sequence. I found that training
using 100 kb of sequence per species produced classification performance nearly equalling that
seen when training using entire genomes (data not shown). For my evaluations I therefore
adopted a conservative standard of training using 100 reads of 10 kb each per species (1 Mb
total). This sampling procedure corrected for differences in genome size between species, and
sped up the training phase of the computations.

5.2.4 Sampling the test data

The phylogenetic distribution of the test samples may affect the outcome of the evaluation,
depending on which scoring scheme is used. In the simplest case, if test samples are drawn uni-
formly from all of the available genomes, then they will be strongly biased towards some clades
and against others. Total classification accuracy is likely to be artificially high in this case,
because the test samples will tend to come from the very classes that are easiest to distinguish.

“Class-normalized” measures of accuracy, sensitivity, and specificity attempt to correct for this
effect by giving each class an equal contribution to the total score, regardless of the number
of samples in it. When using such a measure we need to ensure that enough test samples are
taken from each class that its class-specific sensitivity and specificity are accurately measured.
This is not the case when genomes are sampled uniformly, because the number of genomes per
division (for example) is extremely unbalanced.

For this reason I allow choosing a phylogenetic level at which uniform sampling of test se-
quences takes place. When using a class-normalized score, it makes the most sense for this
level to match the prediction level: for instance, if we are predicting division labels, then we
should test with equally many samples from each division. In this case, genomes are sampled
uniformly within each balanced class.

The choice of training and test sets described above is designed to produce a realistic estimate
of total classification accuracy. Note that while the real environments being simulated surely
contained species in different abundances, the simulations of section 5.2.2 used uniform distri-
butions of the test species. Thus, we must now provide test samples drawn uniformly from the
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test genomes in order to simulate a realistic distribution of phylogenetic distances to the nearest
training bin (i.e., in order to maintain the validity of the analogy esablished in that section).
This approach is related to the argument that the diversity of a community with many unevenly
distributed species can, for many purposes, be described as having a smaller “effective number
of species”, taken to be uniformly distributed (Jost 2006, 2007).

5.2.5 Summary of labelling choices

In summary, we can choose label sets at different taxonomic levels for four distinct purposes
(Figure 5.3): balancing the test samples, choosing the training bins (and balancing the training
samples), prohibiting classifying a test sample to a bin that is too closely related (the leave-
one-out process), and finally making predictions and measuring their accuracy. In combination,
these choices encompass most of the variation among evaluation methodologies employed in
the literature to date.

5.2.6 A phylogenetic evaluation metric

Classification methods are typically evaluated using a test set consisting of data for which the
correct class is known; samples from this set are classified and the predictions compared to
the right answer. In the case where the classes are related by a phylogenetic tree, we need not
call predictions absolutely “correct” or “wrong”; rather, we have a natural continuous measure
of wrongness, namely the sum of the branch lengths between the predicted taxon and the true
taxon. We call this quantity the “binning error with respect to phylogeny” or “bep”. In comput-
ing these values, we always consider the true taxon to be a leaf on the tree (i.e., a strain), while
the predicted taxon may be an internal node at any level of the tree (Fig 1a,b). After classifying
a test set, we can plot a histogram of the bep distances, or better yet a cumulative histogram.
When the error distribution is plotted for a single species, the result is a plot of class-conditional
sensitivity vs. phylogenetic resolution. We call this the “bep profile” of the class. Plotted for an
entire test set, this plot shows the proportion of test samples classified correctly within a given
phylogenetic distance (Figure 5.5).

A common complaint about binning methods to date is that they are insufficiently accurate—a
belief that arises from evaluations which fix a set of target labels and then report (for example)
85% correct classification. The bep plot allows us to ask the reverse question: given that we
require a certain level of confidence in our predictions, what phylogenetic resolution can we
achieve? Let us assume that for many purposes a confidence of 95% is desirable. Using the
bep plot for a given binning procedure, we can simply read off the phylogenetic distance within
which 95% of the predictions are correct. I call this number “bep95” and use it as a single score
describing the phylogenetic precision of a procedure.
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Training Bins

Leave-one-out Prohibition

Prediction Labels

Test Sources

A

Try again

DB C

Figure 5.3: The label-based evaluation infrastructure. A) Sets of labels are defined for different
purposes at different levels of the tree. B) A test sample is initially classified to a training bin
that is prohibited by the leave-one-out label; this classification is rejected. C) The test sample
is instead classified to the next-best training bin, producing a correct prediction. D) The test
sample is classified to a training bin associated with the wrong prediction label.
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Figure 5.4: The “bep” score. When classifying a single sample, the binning error with respect
to phylogeny (“bep”) is simply the branch length between the predicted taxon (red) and the
true taxon (green). A classification procedure may choose an internal node (i.e., a higher-level
taxon); this incurs a bep cost even if the true taxon is a descendant of the predicted taxon, but
this cost may be less than the cost of a misclassification to a leaf of the tree. The bep value thus
incorporates a tradeoff between accuracy and precision.

5.3 Discussion

To allow meaningful comparisons among binning procedures, I introduced a measure of binning
accuracy that has a consistent meaning regardless of the choice of training bins. In particular, it
will be useful to compare binning performance at different phylogenetic levels in a manner that
incorporates the tradeoff between precision and accuracy. Quantifying this tradeoff will help
decide whether an increase in accuracy at the order level compared to the genus level is worth
the cost of reduced precision.

It might be tempting to think of a binning method as a function which may be applied to a
training set and a test set, i.e. method(training set, test set). However, it will in fact be more
instructive to consider a binning procedure to consist of the combination of the method and
the training set; this combination forms a function which may be applied to the test set, i.e.
(method + training set)(test set). The reason is that we wish to score the performance of different
procedures when applied to the same test set, in order to choose the best one. One question we
hope to answer in this way is which training set to use (e.g., how many training genomes are
necessary? Should they be fragmented or considered whole? At what phylogenetic level should
we make predictions?). Considering the training set to be a part of the procedure that is being
evaluated, and producing a score that has a consistent meaning and can be compared across
training sets, makes it possible to answer these questions. This is in contrast to the conventional
accuracy measures, which are comparable only within the context of a given training set.

The bep95 score has numerous advantages:

Consistent units; resolution vs accuracy. The bep95 score consistently uses branch length
units, and so is comparable across all combinations of binning methods and training labels. In
particular, it straightforwardly incorporates into the score the tradeoff between label resolution
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Figure 5.5: Cumulative histogram of bep scores for the TETRA method compared with the
random expectation. For this example, reads of 1600nt selected randomly from the entire tree of
life were used. The shape of the cumulative histogram curve for the “random” binning method
is completely dictated by the distribution of branch lengths on the tree, which for this example
was taken from Ciccarelli et al. (2006). In particular, the long plateau from bep ~1.5 to ~3.25
arises from the long branch separating Bacteria from Archaea. For better binning methods, the
curve will approach the upper left corner. The bep95 score for a given method is the bep value
at which the cumulative histogram reaches 95% (in this example, almost exactly 1.0 Ciccarelli
units); the lower this score, the better the phylogenetic resolution of the method.
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and accuracy. If the binning procedure attempts to classify only at the division level, then even
if it gets every division right, there is still some error arising from the branch length from the
division node down to the strain. However, if it attempts to classify at the strain level and gets
it wrong, that’s even worse, because the branch lengths from the common ancestor to both the
prediction and the true species are counted. Thus the measure naturally incorporates the idea
that binning correctly but with lower precision is better than aiming for higher precision but
getting it wrong.

Disjoint test and training sets. The bep95 score can describe the precision of binning pro-
cedure even in the case where the test taxa are completely disjoint from the training taxa (a
circumstance which would normally produce “0% accuracy”).

Variable granularity. The bep95 score can meaningfully score a procedure which classifies
at various levels of the tree: i.e., rather than choosing one of a set of disjoint classes, a procedure
might be designed that sometimes chooses a species, but other times chooses only a division,
depending on the procedure’s internal confidence in its predictions.

Weighted by test set composition, vs. uniform class-normalized Sp/Sn. Sensitivity and
specificity are defined only with respect to a single class in a binary classification setting. A
common means of reporting sensitivity and specificity values for a multiclass classifier is to
think of it as a set of binary classifiers, each distinguishing one class from all the others; this
produces sensitivity and specificity values for each class, which can then be averaged to produce
the “class-normalized sensitivity” and “class-normalized specificity”.(Mavromatis et al. 2007;
McHardy et al. 2007). This procedure weights the classes equally, when in fact we are interested
in quality measures that reflect the composition of the test sample. I.e., the class-normalized
specificity may appear to be excellent due to the contributions of rare classes, while the speci-
ficity with respect to a few dominant classes is less good. The bep95 score automatically takes
the composition of the test sample into account.

This property may also be considered a detriment, since in some circumstances the bep95 score
for a given binning procedure and training set may vary widely based on the choice of test set.
In the case of a highly dominated population, for instance, the bep95 score will be driven by the
bep profile of the dominant class (i.e., even for an ideal binning procedure, the bep95 score will
be at least the distance from the dominant population to the nearest training bin). Thus two test
sets with similar richness and evenness but with different dominant populations may produce
different bep95 scores.

In summary, the computation of the bep95 score using test and training sets designed to mirror
real circumstances will allow estimation of binning performance in terms that are directly rel-
evant to biologists. Furthermore, the fact that the bep95 score has a consistent meaning in all
circumstances allows the comparison and optimization of a wide variety of binning procedures,
taking into account both the binning method itself and the choices of training set and classifica-
tion level. It will thus finally become possible, after two decades of discussion of compositional
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biases and proposed binning procedures, to choose the method with the best performance on
the basis of a comprehensive and systematic evaluation.
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Part III

Software



105

Chapter 6

Verdant: a platform for computational
research that guarantees reproducibility,
internal consistency, and currency of
results

6.1 Abstract

Verdant is a system for describing, sharing, and executing computational workflows in a manner
that guarantees reproducible results. It provides a means of ensuring that a set of computational
results are up-to-date with respect to the inputs and thus that they are internally consistent. It
also provides a means of sharing inputs, intermediate results, and final outputs in a manner that
facilitates collaboration while avoiding redundant computation.

Widespread use of a system of this type would lead to many compelling benefits for the sci-
entific community in all disciplines, including computer science, bioinformatics, neuroscience,
physics, climate science, epidemiology, economics, sociology, and so forth.

My prototype implementation demonstrates that many of the ideas presented do in fact work in
practice, but a substantially more robust and user-friendly implementation will be required to
achieve widespread adoption.

6.2 Introduction

The need for tools to make computational research projects fully reproducible is becoming ever
more evident (Mesirov 2010; Barnes 2010; Merali 2010), but the technical and social issues
involved in accomplishing that goal are surprisingly complex (Stodden 2009a,b). A number of
“scientific workflow” tools have been developed over the years (section 6.12), but their use is
not yet standard practice.
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Here I demonstrate several features that to my knowledge have been absent or underemphasized
in workflow systems to date:

• The use of cryptographic hashing to uniquely identify derivation paths.

• “Deep” dependencies on every piece of software used in a derivation, including compilers
and system libraries.

• Automatic distribution of those deep dependencies to whatever machines are performing
the computations.

• Storage of inputs in a distributed version control system, allowing various approaches to
collaboration, including branches and private branches.

• Automatic updating of results when inputs change (“truth maintenance”), even when
these inputs come from collaborators or third parties.

This informal overview may eventually be followed by a document that goes into the concep-
tual underpinnings of collaborative workflow tools and solutions to various pitfalls in more
depth. However, before discussing design principles for workflow managers in general, it will
be helpful to have a basic idea of what my prototype software actually does.

Verdant, the “Versioned Data Analysis Tool”, itself consists of a relatively small amount of glue
code that serves to coordinate the activities of two other programs, Mercurial and Nix, which
do the heavy lifting.

6.3 Version control of input files

All inputs to a computational workflow are stored in a set of Mercurial repositories. By “in-
puts” I mean any computer files that cannot be automatically derived from other files, such as
files created by humans (source code and documentation) as well as raw data obtained from
experiments.

Mercurial is a distributed version control system (DVCS) very similar to Git. Unlike their
predecessors (such as CVS and Subversion), DVCSs do not require a central repository location;
rather, the entire version history is distributed to all clients. It can however be convenient,
though it is not necessary, to store repositories for a given project or lab together in a central
location.

Mercurial assigns version numbers (really cryptographic hashes) to repository snapshots as a
whole, not to individual files. Thus, each input that may vary independently (i.e., each “mod-
ule”) should be stored in a separate repository. This approach produces a large number of
separate repositories, each usually containing a relatively small amount of information such as
the code for a single program, or a single data file.
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I employ a simple standardized naming scheme to keep these many repositories organized,
based on reversed domain names (like Java package naming). For instance, I keep the Muscle
multiple alignment program in a module called “com.drive5.muscle”.

6.4 Specification and computation of the workflow

I have repurposed the Nix package manager (http://www.nixos.org) to drive my computational
workflows. Nix was designed to build Linux programs from their sources with rigorous depen-
dency tracking and resolution; it is conceptually similar to Make, but operates on a larger scale
and with more rigorous guarantees of deterministic results. For instance, when building the
Apache web server from sources, Nix first builds prerequisites such as openssl, downloading
sources as needed.

In the intended usage of Nix, the inputs to the Apache build are the source code files and the
prerequisite libraries; the computation being performed is simply compilation (typically via
Make); and the output is the binary “httpd” program. In my usage, by analogy, data files and
other inputs to some computation are like source code; the computation is whatever we like;
and the output plays the role of the compiled binary, in that it is derived from the inputs.

To perform a computation, then, I write an expression in the Nix language that specifies which
program to run and on which inputs. I specify both the programs and the data inputs by their
module names as described above. These module names map to Mercurial repositories, but
not to specific versions; these will be specified later. I store the Nix expressions themselves as
modules like any other input, so these too are versioned.

The input to one step of the workflow may be the output of another step, which is also described
by a Nix expression. Thus, the Nix dependency resolution mechanism ensures that intermediate
results are computed in the required order. (For readers with CS background: Nix is a pure
functional language with lazy evaluation.)

Workflows need not be linear (as might be implied if we called them “pipelines”); each step
may have multiple inputs and multiple outputs, and intermediate results may be used in multiple
places downstream; the only constraint is that the specified dependency network may obviously
have no cycles.

When I want to run the workflow, I provide a file that maps module names to version numbers
(typically, the most recent version available in each of the module repositories), and request
a specific output. Verdant then derives the output, computing prerequisite intermediate results
as needed. Verdant automatically retrieves the specified version of each input module from its
Mercurial repository, without referring to or interfering with any working copies. This ensures
that the computation is performed on a committed version of each input module, and that the
same version of a given module is used throughout the computation if it appears in multiple
places.

Nix caches the results of each computation, employing cryptographic hashing to uniquely iden-
tify each derived artifact based on all of its dependencies. Thus, if one of several inputs to a
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workflow is updated to a new version, only those nodes that depend on that input need to be
recomputed. The Nix cache may contain multiple output files from the same workflow result-
ing from runs with different input versions. These will have different hash values, and the input
versions that were used in each case can be traced at any time.

6.5 Standard programs and libraries

Inputs to a computation may include not only my own programs and data stored in Verdant
modules as described above, but also Nix expressions from the Nixpkgs collection; these can
build thousands of common Linux packages. Importantly, Nix enforces that every input must
be specified explicitly; for instance, scripts cannot refer to programs expecting them to be on
the path, or to libraries expected to be in /usr/lib. Thus, for instance, a Nix expression that
runs a Perl script must include the Perl interpreter itself as an input. The version of Perl that is
used will be the one specified in Nixpkgs; this will be downloaded and compiled from source
automatically, and any version of Perl already available on the build machine will be ignored.
This provides a hard guarantee that exactly the same versions of every upstream program and
library will be used on every machine where a derivation is computed (e.g., on the desktop ma-
chines of multiple collaborators, and on a production cluster, etc.)– and this happens completely
automatically, with no danger of library incompatibilities and no system administration effort.

A potentially troublesome consequence is that, if a Verdant user updates Nixpkgs after a new
Perl version has become available, then any derivations that involve a Perl script anywhere
upstream must be recomputed. This may seem like overkill, but is formally the correct behavior:
there is no guarantee that existing scripts executed by a new Perl interpreter will give the same
result that they previously did. I take the conservative approach that if any input changes, even
including incremental updates to distant upstream libraries, then all bets are off as to my results,
so I must recompute them. In practice, a solution for now is to update Nixpkgs infrequently if
at all.

6.6 Collaboration and distributed workflows

Because all inputs are stored in Mercurial repositories, all of the collaboration features provided
by distributed version control apply to the Verdant workflow as well, including branching and
merging, private branches, straightforward backups, and so forth.

Also, because Nix derivations are uniquely identifiable by their cryptographic hash, the outputs
of computations can be freely shared among machines or users without fear of unknown vari-
ability in the inputs. Nix provides a means of sharing outputs via a web server (intended as a
mechanism for distributing compiled binaries instead of sources). Thus, for instance, if a user
requests the (potentially expensive) evaluation of an expression that has already been computed,
then Nix can simply download the output instead of recomputing it, with confidence that the
result would have been identical anyway. This can work regardless of where the result was
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previously computed: whether by the same user on a different machine, or by a collaborator, or
by a researcher somewhere in the world who makes his Nix cache publicly accessible.

6.7 Cluster computing

Verdant is ideally suited to cluster and cloud computing, because a) it guarantees a consistent
software environment and b) the pure, functional, and lazy nature of the evaluation of Nix
expressions means that independent derivations may be computed in parallel. The Nix engine
automatically makes use of multicore machines, or, with minor configuration, ad-hoc clusters
of machines. I have successfully computed complex derivation networks in parallel on a large
research cluster at UC Berkeley.

6.8 Continuous Integration

A common piece of infrastructure in a software engineering environment is a “continuous inte-
gration” server, which automatically recompiles code, often from multiple modules, and down-
loads new versions of libraries from remote sources. The resulting programs are then subjected
to automated testing to ensure that the combination of all the latest versions of the software
components behaves as expected. This is done either continuously (i.e., whenever a change is
detected in a version control system) or on a recurring schedule, i.e. nightly.

Verdant inherently provides this functionality for free. It is necessary only to place test cases in
a module that depends on the software to be tested; the output of the derivation is then a report
of the test results. All that remains is to trigger the test derivation regularly (or upon a version
control update); the test results will then naturally reflect the most recent versions of all inputs.

6.9 How this system guarantees reproducibility

In order to reproduce a given result, such as a plot made for a paper, we need a) the version
numbers for all of the input modules upstream of the plot, and either b1) access to the Mercurial
repositories from which we may extract those versions, or b2) archived tarballs of just those
versions of the inputs.

Verdant makes it trivial to archive everything that is needed to reproduce the plot: it can simply
compute the closure of the expression that generates the image. This includes the expression
itself, any upstream Nix expressions used in generating intermediate results, and a list of all
input modules and their versions. Given this list, one can copy all of the indicated artifacts (i.e.,
the tarballs of the specified versions extracted from the Mercurial repositories) to an archival
location.
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The deterministic nature of this whole procedure, verified by cryptographic hashing, guarantees
that the entire computational network leading to the plot can be recomputed later from the
archived inputs, and that all intermediate and final results will be identical. The exact versions
of any programs used (or more likely the source code of these programs) are naturally part of
the archive, so these can always be examined later to fully understand the provenance of the
result.

Thus, this mechanism can be used to publish a complete set of artifacts together with each paper,
allowing readers to regenerate the plots exactly as published, or to generate alternate versions
by changing parameters or providing alternate input files.

6.10 TupleStreams and PlotBot

Many data manipulation tasks that might naturally arise in the course of a scientific workflow
would be most easily performed in a database environment, because SQL is well suited to such
tasks. However, database manipulations are not reproducible, and thus cannot be incorporated
into a Verdant workflow (except perhaps in the form of manipulations to an in-memory database
that is loaded anew at the beginning of a derivation).

Verdant therefore calls for a means to make simple data rearrangements that is functional in
nature. I provide a very simple tool that fills this need, called TupleStreams. As the name
suggests, it functions on streams of tuples, which can be thought of as rows of a table (in
practice, often stored in tab-delimited text files). TupleStreams executes scripts, written in
a simple custom language, that specify transformations to such streams, including selecting
and rearranging columns; computing new columns as functions of existing columns; sorting;
filtering; joining; zippering; and so forth.

Some of these functions (such as sorting) inherently require reading the entire input stream
before operating, and thus are memory-limited. However, in many cases, the transformation of
each row is independent of the others, or perhaps dependent on an aggregate computation based
on the preceding rows. In these cases, a streaming approach is taken, allowing the processing
of arbitrarily large data files.

TupleStreams does nothing that could not be accomplished (with more effort) in Perl or any
other language; but it does dramatically simplify a number of common data-manipulation tasks.

Another task that is frequently performed in a stateful (i.e. non-functional) manner is the prepa-
ration of plots. In order to produce plots as outputs of Verdant workflows, we require a program
that takes two inputs, a data file and a file describing the appearance of the desired plot (a “plot
spec”), and produces a graphic file as output. I was surprised to find a dearth of scriptable
plotting applications available, and so wrote PlotBot to fill this need.

PlotBot is simply a wrapper around the JFreeChart plotting library which allows it to participate
in Verdant workflows as described. JFreeChart provides a wide variety of plot types, including
line plots, scatterplots, bar charts, and so forth, as well as very many options for customizing



111

the plot appearance. As a result, the plot spec files are unfortunately quite complex; providing
a simpler syntax for these (or better yet, a graphical editor) will make the program substantially
more user-friendly in the future.

PlotBot need not incorporate any features for data manipulations that might normally be con-
sidered to be in the purview of a plotting program (e.g., histogramming, adding noise, sorting
and aggregating data, computing error bars, etc.) because all such transformations can be made
in TupleStreams. It is thus a common pattern in Verdant workflows to use TupleStreams to
generate the exact values to be plotted, which are then passed to PlotBot for drawing.

6.11 Conclusion

Verdant is a system for describing, sharing, and executing computational workflows in a manner
that guarantees reproducible results. My prototype implementation is difficult to use and suffers
from various technical hiccups. Nonetheless, it is a proof of principle that computational results
can be simultaneously reproducible, internally consistent, and up-to-date, even when multiple
collaborators work in parallel. In fact, the system as described will work even when different
inputs to a system are maintained by different parties, who are thus effectively collaborators
even if they don’t know each other.

A future implementation, not dependent on Nix, can be made far more user-friendly and effi-
cient in various ways. Indeed, many similar projects already provide polished user interfaces
(section 6.12)

The combination of version control with reproducible computation means that we can both
examine the provenance of old results and compute up-to-date results at any time.

Workflow inputs can be shared in a relatively fine-grained way through Mercurial repositories.
Many programs and data files are of interest to thousands of researchers, and thus could be
stored in publicly accessible Mercurial repositories, providing those researchers with automatic
access to the latest version (or whatever specific versions they choose) of each third-party input
to their computations.

Computational results can be uniquely identified using cryptographic hashes (both of the deriva-
tion path and of the result itself) and shared (presently via “Nix channels”). Such outputs may
also be of widespread interest when they are published in journal articles; for instance, re-
searchers may wish to use published outputs as inputs to their own computations. Thus these
artifacts could also be made publicly available. Furthermore, electronic availability of the work-
flow used to compute results for a given publication would facilitate complete transparency
about exactly what was done, and would allow third parties to test whether the conclusions of
the paper (or any downstream results) remain true when new versions of the inputs become
available.

In sum, widespread use of a system of this type would produce a worldwide ecosystem of ver-
sioned interdependent digital artifacts. Performing computational research in this way would
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guarantee reproducibility, would enable consistency within and between studies, would encour-
age openness, and would allow work in all disciplines where computation is used again to be
performed according to the scientific method.

I used Verdant to perform nearly all of the computations reported in this dissertation, and to
generate nearly all of the plots. Indeed, but for one minor technical hiccup, it was nearly possible
for the dissertation PDF itself to be the output of a Verdant derivation, dependent on those plots
and hence in turn on the computations.

6.12 Related projects

A number of projects that aim to manage workflows for reproducible research are far more pol-
ished than Verdant (Table 6.1), but I am not yet convinced that any of them provide the same
combination of flexibility, rigor, and openness that Verdant does. In particular, Verdant demon-
strates the utility of integrating version control systems, cryptographic hashing, and functional
programming, as weorders of magnitudell as a deep dependency network including compilers
and system libraries; and it supports a fully distributed collaboration model. To my knowledge
no other project has this combination of features.
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